УДК 658.511.4

DOI: 10.20998/2413-3000.2016.1173.15

А. И. МЕНЕЙЛЮК, Л. В. ЛОБАКОВА

МЕТОДИКА ВЫБОРА ЭФФЕКТИВНЫХ МОДЕЛЕЙ РЕАЛИЗАЦИИ ПРОЕКТОВ ПЕРЕПРОФИЛИРОВАНИЯ ЗДАНИЙ

Представлена методика выбора эффективных организационно-технических решений при реконструкции зданий с перепрофилированием. Методика основана на построении различных вариантов проекта в программе Microsoft Project и их экспериментально-статистическом анализе с использованием программы СОМРЕХ. Внедрение данной методики при перепрофилировании зданий позволит выбирать эффективные модели проектов в зависимости от заданных ограничений. Также, данная методика может быть использована для различных строительных проектов.

Ключевые слова: моделирование процессов, выбор эффективной модели, экспериментально-статистическое моделирование, перепрофилирование.

Введение. В настоящее время проекты И перепрофилирования являются реконструкции одними из наиболее распространенных в сфере строительства. Это связано с тем, что эксплуатация ветхих зданий и необходимость в постоянном ремонте, оказывается в конечном итоге значительно более затратной, чем выполнение его реконструкции. На предприятиях при техническом промышленных развитии возникают и накапливаются со временем несоответствия между строительными решениями прошлых лет и потребностями сегодняшнего дня. При управлении проектами перепрофилирования зданий целесообразно обратить внимание выбор решений эффективных инженерных c целью сокращения продолжительности работ и уменьшения актуальной стоимости, что является задачей управления проектами в строительстве.

Анализ основных достижений и литературы. Перепрофилирование помещений устаревших заводов, фабрик уже много лет практикуется по всему миру. Существует большое множество жилых зданий, выставочных и бизнес центров, которые ранее были цехами фабрик и заводов. При реализации проектов перепрофилирования зданий на этапе планирования зачастую сталкиваются с проблемой выбора наиболее эффективной модели проведения работ.

В целом, рациональная организация процессов реконструкции должна обеспечивать выполнение работ в минимальные сроки и с минимальными финансовыми затратами. Выбор эффективных инженерных решений с целью сокращения продолжительности работ, уменьшения стоимости и выбора наиболее приемлемой интенсивности финансирования является актуальной задачей в любом строительном проекте. Для выбора оптимального варианта проведения проекта необходимо выполнить анализ эффективности моделей проекта при различных сочетаниях организационноэкономических параметров реализации проекта в соответствии с требованиями и техническим заданием.

В настоящее время, в научно-технической литературе результаты исследований, изучающие методики выбора эффективных организационно-технологических решений проведения строительно-монтажных работ по перепрофилированию объектов,

практически отсутствуют.

Цель исследования, постановка задачи. Целью исследований является представление методики выбора эффективных моделей проектов перепрофилирования зданий.

Материалы исследования. Для выбора эффективных организационно-технологических решений авторами разработан алгоритм ее выполнения. Методика выбора эффективных моделей проектов состоит из таких основных этапов:

- определение требований к проекту, составление технического задания в соответствии с особенностями проекта;
- планирование численного эксперимента (планирование сочетаний и уровней организационнотехнологических параметров);
- разработка Иерархической Структуры Работ (WBS) и разработка расписания проекта;
- моделирование вариантов перепрофилирования здания в соответствии с принятым планом.

Выбор наиболее эффективной модели проекта, исходя из заданных ограничений.

На стадии планирования до начала процессов исполнения должны быть обозначены требования к проекту и составлено техническое задание в соответствии с особенностями проекта. Каждый объект перепрофилирования имеет свои особенности и требует индивидуальных решений.

Технология перепрофилирования или изменения целевого назначения здания существенно отличается от нового строительства и имеет свои особенности: стесненность условий, сложность транспортных схем подачи материалов, конструкций и оборудования, значительная трудоемкость и сложность механизации (демонтаж строительных конструкций и оборудования, разборка здания или его отдельных частей, разрушение отдельных конструктивов, усиление конструкций и др.), необходимость дополнительных мероприятий по технике безопасности при производстве строительномонтажных работ и др. [1]

Планирование численного эксперимента начинается с анализа показателей эффективности проекта и выбора наиболее значимых из них. В данных исследованиях это – сроки проекта, его стоимость и

© А. И. Менейлюк, Л. В. Лобакова, 2016

финансирования. После интенсивность этого выполняется анализ и выбор факторов, оказывающих наибольшее влияние на выбранные показатели. В нашей работе варьировалось количество рабочих смен в сутки, количество рабочих дней в неделю, коэффициент совмещения работ, условия финансирования (собственные средства заказчика проекта, кредитные средства, лизинговые средства). обратить внимание. **V**СЛОВИЯ финансирования являются взаимозависимыми, так как сумма всех средств затраченных на проект не может превышать 100% стоимости проекта. Следовательно, увеличение значения уровня одного из факторов приведёт к соответствующему уменьшению значений уровней других.

Численный эксперимент по определению зависимостей между выбранными показателями и факторами, оказывающими на них влияние, целесообразно выполнять с использованием

математической теории планирования эксперимента. Она является основополагающей частью теории экспериментально-статистического моделирования.[2]

Использование теории планирования эксперимента позволяет сократить количество проводимых экспериментов по сравнению полнофакторной моделью. Например, использование теории планирования позволяет 243 эксперимента (5факторный эксперимент на 3 уровнях) сократить до пятнадцати. Каждая из 15 моделей – это функция. Она показывает, как изменяется исследуемый показатель (Y) при изменении соответствующих факторов (Xi). При этом обеспечивается адекватность результатов, а именно качественная и количественная оценка влияния основных исследуемых факторов и их совокупности на исследуемые показатели. [3,4,5].

Пример пятифакторного эксперимента представлен в таблице 1.

			140111144 1	1101011 0110110	piiiitu ii	уровии вира	ирусмых факт	ород			
	Н	ормализова	нные значе	ния факторо	В	Натурные значения факторов					
№ точки	<i>v</i> ₁ Собственные средства	v ₂ Кредитные средства	ν ₃ Лизинговые средства	X_4 -Количество рабочих часов в неделю, часы	Х ₅ -Коэффициент совмещения работ	и) Собственные средства, % от общей стоимости проекта	$ u_2$ Кредитные средства, % от общей стоимости проекта	v_3 Лизинговые средства, % от общей стоимости проекта	X_4 -Количество рабочих часов в неделю, часы	X ₅ -Коэффициент совмещения работ, %	
1	0,00	1,00	0,00	-1	-1,0	0	100	0	40	0%	
2	0.5	0,00	0.5	-0.11	-1,0	50	0	50	72	0%	
3	1,00	0,00	0,00	-1	0,0	100	0	0	40	25%	
4	0,00	0,00	1,00	-1	0,0	0	0	100	40	25%	
5	0.5	0.5	0,00	-1	1,0	50	50	0	40	50%	
6	0.5	0.5	0,00	-0.11	-1,0	50	50	0	72	0%	
7	0.5	0,00	0.5	-0.11	0,0	50	0	50	72	25%	
8	0,00	0.5	0.5	-0.11	1,0	0	50	50	72	50%	
9	1,00	0,00	0,00	1	-1,0	100	0	0	112	0%	
10	0,00	1,00	0,00	1	-1,0	0	100	0	112	0%	
11	0,00	0,00	1,00	1	-1,0	0	0	100	112	0%	
12	0.33(3)	0.33(3)	0.33(3)	1	0,0	33,3(3)	33,3(3)	33,3(3)	112	25%	
13	1,00	0,00	0,00	1	1,0	100	0	0	112	50%	
14	0,00	1,00	0,00	1	1,0	0	100	0	112	50%	
15	0,00	0,00	1,00	1	1,0	0	0	100	112	50%	

Таблица 1 – План эксперимента и уровни варьируемых факторов

Разработка Иерархической Структуры Работ отображает отдельные задачи на пути к реализации всего проекта перепрофилирования, такие как проведение обследования технического состояния объекта перепрофилирования, проведение

демонтажных работ, устройство системы электроснабжения и другие задачи. Также на данном этапе происходит определение операций, определение последовательности операций, определение ресурсов

для выполнения операций, определение длительности операций и составление расписания проекта.

В соответствии с принятым планом эксперимента для исследуемого проекта было построено 15 различных моделей в виде диаграмм Ганта, отображающих ход работ по перепрофилированию. Данные модели представляют собой различные

варианты проекта отличаются одного И организационными и технологическими решениями. Для построения моделей была использована компьютерная программа Microsoft Project. Пример перепрофилирования фрагмента модели представлен на рисунке 1.

Название задачи ▼	O6: paf ▼	Едини изме г ▼	Трудозат _і ▼	Длител ▼	Начало ▼	Окончание	Пред	Названия ресурс	21 Anp '14 28 Anp '14 05 N
Реконструкция бизнес центра			73 794,35 4	63,88 дней?	Пн 21.04.14	Пн 23.06.14			
□ Демонтажные работы			2 530,5 4	6,41 дней?	Пн 21.04.14	Bc 27.04.14			•
начало			0 4	0,5 дней	Пн 21.04.14	Пн 21.04.14			io ₁
Разборка кирпичных перегородок	60.1	м3	270,5 ч	1, 69 дней	Пн 21.04.14	Cp 23.04.14	3	Рабочие-строи 000%];Подъемі	Рабочие-строители[1 000%];Под
Разборка лепных изделий	53.6	шт	11 4	0,69 дне	Пн 21.04.14	Вт 22.04.14	3	Рабочие-строи	Ф Рабочие-строители
Перемещение и складирование кирпича	1	Т	123 4	0,77 дней	Пн 21.04.14	Вт 22.04.14	3	Рабочие-строи	🚡 Рабочие-строители[1 000%]
Разборка вентиляционных каналов	0.74	100 m2	77 4	0,8 дней	Пн 21.04.14	Cp 23.04.14	3	Рабочие-строи одноковшовыє	
Демонтаж кабельных каналов	1,36	100 м	174	0,53 дней	Пн 21.04.14	Вт 22.04.14	3	Рабочие-строи бортовые до 3	Рабочие-строители[200%];Автомоб
Разборка трубопроводов	0,32	100 M	18 4	0,56 дне	Пн 21.04.14	Вт 22.04.14	3	Рабочие-строи	🖟 Рабочие-строители[200%];Погрузч
Демонтаж радиаторов	0,06	100 шт	64	0,19 дне	Пн 21.04.14	Пн 21.04.14	3	Рабочие-строи	Рабочие-строители[200%];Погрузчи
Разборка труб отопления	0,14	100 M	10 4	0,31 дне	Пн 21.04.14	Пн 21.04.14	3	Рабочие-строи	Рабочие-строители[200%];Погрузчи

Рис. 1 – Фрагмент модели перепрофилирования здания в Microsoft Project

На данном этапе происходит определение значений заданных показателей эффективности при различных сочетаниях факторов.

Расчет моделей рекомендуется производить с помощью программы СОМРЕХ, разработанной в Одесской государственной академии строительства и архитектуры. [6,7]

Для визуализации результатов исследования, содержащих три взаимозависимых фактора, использовались графики, которые называются тернарными. На рисунке 2 показан график, содержащий изолинии (линии одинаковых значений) показателя эффективности «стоимость».

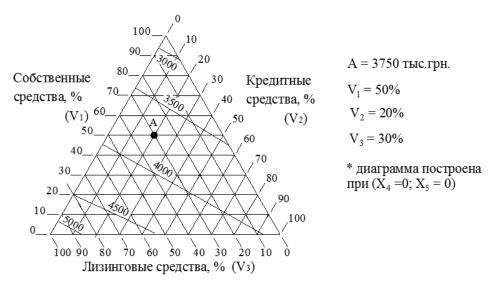


Рис. 2 – Пример тернарного графика (показатель «стоимость», тыс. грн.)

Показатель «стоимость» зависит от соотношения технологических факторов $V_1,\ V_2,\ V_3,\$ выраженных в процентах. Для поиска уровня каждого из факторов некой точки A необходимо определить координаты по

линиям координатной сетки. Так, для искомой точки $A=3750\,$ тыс. грн.: $V_1=50\%;\ V_2=20\%;\ V_3=30\%)$. Это означает, что 50% от всей стоимости проекта —

собственные средства, 20% – кредитные и 30% – лизинговые.

Для анализа результатов численного эксперимента строятся экспериментально-статистические модели, описывающие влияние выбранных организационно-экономических факторов на исследуемый показатель. Следует отметить, что математический аппарат позволяет по полученным результатам эксперимента построить треугольники в любой точке в пределах исследуемой области, для любых сочетаний организационных факторов.

На рисунке 3 показаны зависимости показателя эффективности «Стоимость» от факторов V_1 (собственные средства), V_2 (кредитные средства), V_3 (лизинговые средства) для девяти различных организационных схем, т.е. сочетании значений организационных факторов. «Стоимость» достигает своих экстремумов в следующих точках:

 $Y_{max} = 6662,5$ тыс. грн. (V_1 =0%; V_2 =0%; V_3 =100%; рабочее время X_4 =40 часов в неделю; коэффициент совмещения работ X_5 =0%);

 $Y_{min}=2527,5$ тыс. грн. (V_1 =100%; V_2 =0%; V_3 =0%; рабочее время X_4 =112 часов в неделю; коэффициент совмещения работ X_5 =50%);

Для девяти рассматриваемых сочетаний значений организационных факторов достижение минимальных значений показателя «Стоимость» возможно при использовании такой схемы финансирования как собственные средства, максимальных — при использовании лизинговых средств.

Также, мы можем увидеть, что при увеличении коэффициента совмещения работ и количества рабочих часов в неделю стоимость уменьшается.

К примеру, при количестве рабочего времени X_4 = 72 часа в неделю, при коэффициенте совмещения работ X_5 = 50% и при сочетании финансирования V_1 = 60%, V_2 = 0%, V_3 = 40% можно определить, что стоимость работ по перепрофилированию будет равна 3500 тыс. грн. Таких же значений стоимости работ можно достичь, если количество рабочего времени X_4 = 72 часа в неделю, коэффициент совмещения работ X_5 = 50%, V_1 = 20%, V_2 = 80%, V_3 = 0% или же X_4 = 112 часов в неделю, X_5 = 0%, V_1 = 55%, V_2 = 35%, V_3 = 10%. Но при X_4 = 40 часов в неделю, X_5 = 0%, и при любых сочетаниях V_1 , V_2 , V_3 стоимость работ в 3500 тыс. грн. не возможна.

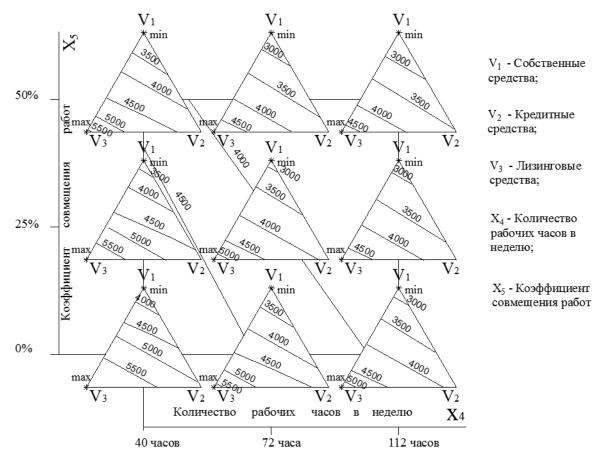


Рис. 3 – График влияния факторов варьирования на стоимость проекта (тыс. грн.)

После построения и анализа экспериментальностатистических моделей в соответствии с разработанной методикой необходимо выбрать наиболее эффективную модель.

С помощью графика на рисунке 3 можно выбрать эффективное организационно-технологическое

решение в зависимости от заданных ограничений. Это могут быть: интенсивность финансирования, стоимость проекта, наличие квалифицированных рабочих, машин, механизмов, материалов, требования по технике безопасности и охране труда.

Например, заданные ограничения: стоимость проекта не должна превышать 3 млн. грн., собственные средства заказчика проекта должны составлять 100 % стоимости проекта. На рисунке 4 заштрихованная область отвечает значениям стоимости проекта, которые меньше 3 млн. грн. Y1-Y5 — стоимость проекта, в зависимости от варьирования организационных и технологических факторов, при

использовании только собственных денежных средств заказчика. В данном случае наименьшая стоимость проекта будет составлять 2527,5 тыс. грн. при 112 рабочих часах в неделю и при коэффициенте совмещения работ равному 50 %. Этот вариант реализации проекта перепрофилирования здания можно назвать наиболее эффективным учитывая имеющиеся ограничения.

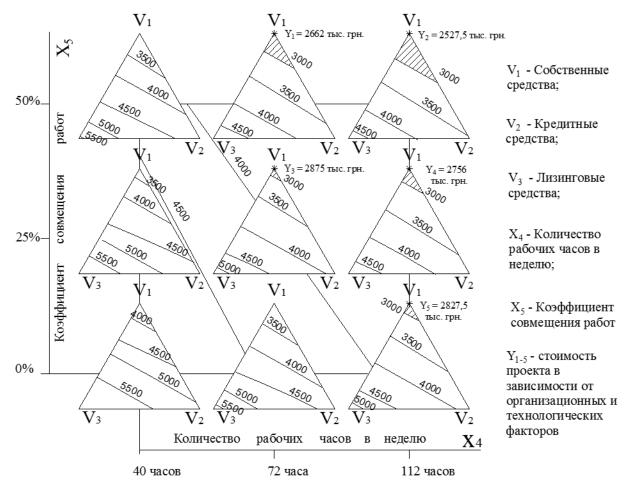


Рис. 4 – График влияния факторов варьирования на стоимость проекта с ограничениями

Результаты исследования. Действия по выбору эффективной модели проекта перепрофилирования рекомендуется производить в следующей последовательности:

- 1. Составить WBS структуру проекта.
- 2. Определить и ввести в программу для управления проектами (например, Microsoft Project) проектные объемы работ и затраты труда рабочих.
- 3. Определить перечень необходимых стройматериалов, оборудования, машин и механизмов, затраты на их использование по каждому процессу, после чего ввести данные в эту же программу.
- 4. Составить перечень показателей эффективности производственных процессов, которые необходимо определить в процессе экспериментальностатистического моделирования.
- 5. Назначить варьируемые факторы и уровни их изменения относительно величин базового плана.

- 6. Определить нормативный состав исполнителей и их заработную плату, затем ввести данные в программу Microsoft Project.
- 7. Принять необходимое количество рабочего времени.
 - 8. Произвести взаимоувязку работ во времени.

После ввода данных программа самостоятельно строит критический путь и определяет запасы по времени в базовой модели.

- 9. Выбрать план проведения численного эксперимента в соответствии с математической теорией планирования.
- 11. Построить необходимое количество вариантов проекта в соответствии с намеченным планом.
- 12. Определить аналитические зависимости показателей эффективности от варьируемых факторов в исследуемых граничных пределах с помощью программы СОМРЕХ.
- 13. Построить графики этих зависимостей (для удобства использования).

- 14. Выполнить анализ полученных моделей.
- 15. Выбрать эффективную модель проекта в зависимости от имеющихся граничных условий на основе анализа моделей.
- 16. После начала строительства в соответствии с выбранной моделью производить мониторинг производства работ.
- 17. В случае необходимости, корректировать выбранную модель или заменить ее в соответствии с изменениями условий по отношению к запланированным (изменение сроков, интенсивности финансирования, количества рабочих, машин, механизмов, оборудования и т.п.)

Выводы.

- 1. Выбор эффективной модели реализации проектов перепрофилирования зданий следует проводить в соответствии с алгоритмом или планом с целью логичного и исключающего ошибки достижения конечного результата.
- 2. Для решения задачи выбора эффективных организационно-технологических решений перепрофилирования зданий необходимо использовать экспериментально-статистическое моделирование строительных процессов, а также компьютерные программы для управления проектами.
- 3. Внедрение разработанной методики при перепрофилировании зданий позволяет выбирать эффективные модели проектов в зависимости от заданных ограничений (интенсивности финансирования, требуемых сроков строительства и т.п).
- 4. Разработанная методика может быть использована для выбора эффективных моделей других строительных проектов.

литературы: **1.** Топчий, Д. В. перепрофилирование производственных зданий Д. В. Топчий. – Москва: ACB, 2008. – 144 с 2. Myers, R. Response Surface Methodology: Process and Product Optimization Using Designed Experiments [Text] / R. Myers, D. Montgomery. - 2nd ed. -John Wiley & Sons, 2002. – 814 р. 3. Адлер, Ю. П. Планирование эксперимента при поиске оптимальных условий [Текст] / Ю. П. Адлер, Е. В. Маркова, Ю. В. Грановский. - М.: Наука. - 1-е изд., 1971. – 283 с. – 2-е изд., 1976. – 279 с. **4.** Налимов, В. В. Теория эксперимента [Текст] / В. В. Налимов. - М.: Наука, 1971. - 208 с. 5. Краковский, Г. И. Планирование экспериментов [Текст] Г. Й. Краковский, Г. Ф. Филаретов. – Минск : БТУ, 1982. – 757 с. 6. Вознесенский, В. А. Статистические методы планирования эксперимента в технико-экономических исследованиях [Текст] / В. А. Вознесенский. - М.: Финансы и статистика, 1981. - 263 с. 7. Вознесенский, В. А. Численные методы решения строительнотехнологических задач на ЭВМ [Текст] / В. А. Вознесенский, *Т. В. Ляшенко, Б. Л. Огарков.* – К. : Вища школа, 1989.–328. с.

References: 1. Topchiy, D. V. (2008).Rekonstruktsiva pereprofilirovanie proizvodstvennyih zdaniy. [Reconstruction and reprofiling of industrial buildings]. Mosow: Assotsiatsiya stroitelnyih vuzov (ASV), [in Russian]. 2. Myers, R., & Montgomery, D. (2002). Response Surface Methodology: Process and Product Optimization Using Designed Experiments- 2nd ed. John Wiley & Sons, [in English]. Markova, E. V., & Granovskiy, Y. V. Planirovanie eksperimenta pri poiske optimalnyih usloviy. [Experiment planning at the search for optimal conditions]. Mosow: Nauka, [in Russian]. 4. Nalimov, V. V. (1971). Teoriya eksperimenta. [The theory of an experiment]. Mosow: Nauka [in Russian]. 5. Krakovskiy, G. I., & Filaretov, G. F. (1982). Planirovanie eksperimentov. [Experiment planning]. Minsk: BTU [in Russian]. 6. Voznesenskiy, V. A. (1981). Statisticheskie metodyi planirovaniya eksperimenta v tehnikoekonomicheskih issledovaniyah. [Statistical methods for experiment planning in the feasibility study]. Mosow: Finance and Statistics [in Russian]. 7. Voznesenskiy, V. A., Lyashenko, T. V., & Ogarkov, B. L. (1989). Chislennyie metodyi resheniya stroitelno-tehnologicheskih zadach na EVM. [Numerical methods for the construction and of technological tasks on a computer]. Kyiv: Vischa shkola [in Russian].

Поступила (received) 23.11.2015

Відомості про авторів / Сведения об авторах / About the Authors

Менейлюк Александр Иванович – доктор технических наук, профессор, заведующий кафедрой технологии строительного производства Одесской государственной академии строительства и архитектуры, г. Одесса; тел.: (048)7236151; e-mail: pr.mai@mail.ru.

Meneylyuk Alexander – PhD, Professor, Head at the Department of Technology of building production in Odessa State Academy Civil Engineering and Architecture, Odessa; tel.: (048)7236151; e-mail: pr.mai@mail.ru.

Побакова Лилия Вячеславовна — аспирант кафедры Технологии строительного производства Одесской государственной академии строительства и архитектуры, г. Одесса; e-mail: liya_lobakova@mail.ru.

Lobakova Liliya – postgraduate student at the Department of Technology of building production in Odessa State Academy of Civil Engineering and Architecture, Odessa; e-mail: liya_lobakova@mail.ru.