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ЗАСТОСУВАННЯ ШТУЧНОГО ІНТЕЛЕКТУ В БІЗНЕС-ПРОЦЕСАХ ПРОДАЖУ АНУЇТЕТІВ 

НЕЗАЛЕЖНИМИ СТРАХОВИМИ АГЕНТАМИ 

У статті виконано системний аналіз застосування штучного інтелекту (ШІ) в бізнес-процесах продажу ануїтетів незалежними страховими 

агентами та запропоновано процесну декомпозицію повного циклу взаємодії з клієнтом.  Виокремлено послідовні етапи: генерація лідів і 
пошук потенційних клієнтів; виявлення та оцінка потреб; пошук і підбір продукту; презентація пропозицій і консультація; подання заявки та 

андеррайтинг; оформлення й доставка поліса; післяпродажна взаємодія та утримання. Для кожного етапу виконано «картографування» 

відповідних класів моделей і методів ШІ та їх типових функцій у підтримці прийняття рішень і автоматизації. Узагальнення сучасних 
досліджень показує, що аналітичні моделі (ML-скоринг, класифікація, ансамблеві підходи) підвищують якість відбору лідів, прогнозування 

поведінки клієнта й оцінювання ризиків; генеративні та NLP/LLM-рішення підтримують роботу з неструктурованими даними (транскрипти 

дзвінків, листування, документи), забезпечують витяг параметрів, резюмування й підготовку персоналізованих матеріалів для консультації; 
агентні підходи оркеструють робочі процеси у CRM та документообігу. Наведено кількісні індикатори поширеності застосування моделей за 

етапами процесу, що відображає нерівномірність технологічної зрілості рішень. Визначено бар’єри впровадження: фрагментованість і 

неоднорідність даних, алгоритмічна упередженість, обмежена прозорість і пояснюваність, регуляторні вимоги SEC і NAIC, а також складність 

інтеграції з CRM. Окреслено напрями подальших досліджень: стандартизація підходів, розвиток пояснюваного ШІ та кількісна оцінка балансу 

між людською експертизою й автоматизацією на різних етапах продажу ануїтетів.  

Ключові слова: бізнес-процеси, штучний інтелект; машинне навчання; ануїтети; незалежні страхові агенти; генерація лідів; виявлення 

потреб клієнта; рекомендаційні системи; автоматизація; пояснюваний ШІ; цифрова трансформація. 
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THE APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE ANNUITY SALES BUSINESS 

PROCESSES OF INDEPENDENT INSURANCE AGENTS 

This article presents a systematic analysis of the application of artificial intelligence (AI) in the business processes of annuity sales by independent 

insurance agents and proposes a process-based decomposition of the full customer interaction lifecycle. The following sequential stages are identified: 

lead generation; client discovery and needs assessment; product research and carrier selection; proposal presentation and consultation; application 
submission and underwriting; policy issuance and delivery; and post-sale engagement and retention. For each stage, a “mapping” of relevant classes of 

AI models and methods and their typical functions in decision support and automation is provided. A synthesis of contemporary research shows that 

analytical models (ML-based scoring, classification, and ensemble approaches) improve lead qualification, customer behavior forecasting, and risk 

assessment; generative and NLP/LLM-based solutions support work with unstructured data (call transcripts, chat transcripts, correspondence, and 

documents), enabling parameter extraction, summarization, and the preparation of personalized advisory materials; and agent-based approaches 

orchestrate workflows within CRM systems and document management. Quantitative indicators of the prevalence of model usage across process stages 
are presented, reflecting the uneven technological maturity of available solutions. Key implementation barriers are identified, including data 

fragmentation and heterogeneity, algorithmic bias, limited transparency and explainability, regulatory requirements imposed by the SEC and NAIC, and 

the complexity of CRM integration. Directions for future research are outlined, including the standardization of approaches, the advancement of 
explainable AI, and the quantitative assessment of the balance between human expertise and automation at different stages of annuity sales. 

Keywords: business processes; artificial intelligence; machine learning; annuities; independent insurance agents; lead generation; customer needs 

identification; recommender systems; automation; explainable AI; digital transformation.

Вступ. Сьогодні  сучасний ринок страхування 

ануїтетів зазнає значних змін під впливом сукупності 

взаємопов'язаних факторів, включаючи технологічну 

трансформацію, зміну споживчих очікувань, 

регуляторні зміни та економічні умови. Цифрова 

трансформація в страховому секторі зумовлена: 1) 

активним розвитком обсягу ринку впровадження 

інструментів штучного інтелекту (ШІ), вартість якого у 

2025 році перевищила 10 мільярдів доларів [1], де 

продаж ануїтетів стала однією з найбільш 

трансформованих галузей; 2) оптимізацією процесів 

шляхом інтеграції інструментів ШІ у життєвий цикл 

продажу ануїтетів – від етапу залучення клієнтів до 

післяпродажного супроводу – забезпечує зростання 

ефективності та рівня персоналізації  [2, 3]. Завдяки 

конвергенції технологій машинного навчання, 

аналітики великих даних, хмарних обчислень та 

інтелектуальної автоматизації, складні завдання, 

зокрема оцінка ризиків в андеррайтингу, що раніше 

виконувалися фахівцями, дедалі частіше 

автоматизуються за допомогою ШІ [2, 4, 5, 6]. 

Сучасна страхова галузь характеризується 

високою трудомісткістю операційних процесів, 

постійною динамікою ринку та зростаючою 

складністю страхових продуктів, зокрема ануїтетів. 

Тому важливими факторами, що зумовлюють 

необхідність впровадження штучного інтелекту, є 

складність продуктів, яка виникає внаслідок перетину 

нормативних вимог, індивідуальних налаштувань для 

клієнтів та волатильності ринку; конкуренція між 

страховими компаніями, що постійно виводять нові 

продукти, створюючи виклики для незалежних агентів, 

які потребують додаткового часу для опанування 

новинок, а для клієнтів – ускладнюють розуміння 

пропонованих рішень; збільшення обсягів 

оброблюваних даних і обмежена здатність існуючих 

інформаційних систем повною мірою відображати всі 

аспекти страхових продуктів створюють додаткові 

бар’єри для ефективного управління. У таких умовах 

впровадження штучного інтелекту стає ключовим 

чинником, що сприяє автоматизації рутинних завдань, 

підвищенню точності прийняття рішень, інтеграції 
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даних по всіх страхових продуктах та адаптації до 

швидкозмінного середовища. В результаті ШІ 

відкриває нові можливості для підвищення 

конкурентоспроможності агентів і страхової компанії 

загалом, а також поліпшення якості обслуговування 

клієнтів через перехід до консультативної ролі, 

посиленої технологічними можливостями 

інтелектуальних систем. 

 

Метою  статті є аналітичний огляд сучасних 

інструментів штучного інтелекту (ШІ), що 

застосовуються страховими агентами, з акцентом на їх 

інтеграцію в ключові етапи продажів – від залучення 

клієнтів і персоналізації пропозицій до андеррайтингу 

та постпродажного супроводу. На основі аналізу 

доступних платформ, таких як автоматизовані чат-боти 

для консультацій і моделі машинного навчання для 

оцінки ризиків, необхідно виявити сильні та слабкі 

сторони цих технологій, оцінити їх відповідність 

регуляторним вимогам SEC і NAIC, а також визначити 

бар'єри впровадження для незалежних агентів.  

Впровадження ШІ в бізнес процеси продажі 

ануїтетів незалежними страховими агентами. 

Для систематизації впровадження інструментів 

ШІ спочатку детально проаналізуємо процес продажу 

ануїтетів. Бізнес-процес продажу продукту ануїтету 

можна розкласти на наступні ключові етапи (рис. 1): 

генерація лідів та пошук нових клієнтів, виявлення та 

оцінка потреб клієнтів, пошук і підбір продукту 

страхової компанії, презентація пропозицій та 

консультація клієнта, подання заявки та оцінка ризиків 

клієнта, оформлення та доставка ануїтетного полісу, 

післяпродажна взаємодія та утримання клієнтів. Кожен 

етап традиційно включає ручну обробку даних, 

комунікацію та рішення, що призводить до 

неефективності роботи та навіть втрати клієнта; ШІ-

інструменти оптимізують їх, досягаючи автоматизації 

до 70% рутинних завдань [7]. 

Подальша деконструкція цих процесів дозволить 

виявити критичні точки, де інноваційні технології та 

інструменти ШІ здатні підвищити ефективність роботи 

агента та створити додаткову цінність для клієнта.

 

Рис. 1. Бізнес-процеси процесу продажу продукту ануїтету

https://www.mckinsey.com/industries/financial-services/our-insights/the-future-of-ai-in-the-insurance-industry
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Генерація лідів та пошук нових клієнтів. 

Генерація лідів та пошук нових потенційних клієнтів є 

початковим етапом в роботі незалежного страхового 

агента у процесі продажу ануїтетів. Цей етап є 

критично важливим з кількох ключових причин, які 

впливають на продажі, доходи, ефективність та 

конкурентоспроможність [8, 9]. Незалежні страхові 

агенти функціонують поза прямим впливом 

маркетингових організацій, брокерських структур та 

страхових компаній, що зумовлює особливості їхньої 

професійної діяльності. На відміну від агентів, які 

працюють у межах корпоративних систем із 

розвиненою мережею залучення клієнтів, незалежні 

фахівці змушені самостійно формувати власну 

клієнтську базу та розробляти стратегії продажу. Такий 

формат роботи підвищує значення індивідуальних 

підходів до просування страхових продуктів, розвитку 

комунікаційних навичок і застосування сучасних 

методів маркетингу та продажів.  

У цьому контексті особливої актуальності набуває 

використання сучасних цифрових технологій, включно 

зі штучним інтелектом, які відкривають нові 

можливості для аналітики клієнтських потреб, 

оптимізації процесів взаємодії та підвищення 

ефективності роботи агентів.  

У дослідженнях [8, 9, 10] зазначається, що методи 

машинного навчання, такі як логістична регресія, 

дерева рішень, випадковий ліс, градієнтний бустинг та 

нейронні мережі, є найбільш ефективними для 

прогнозування ймовірності конверсії лідів на основі 

історичних даних, що дозволяє зосередити зусилля на 

найбільш перспективних потенційних клієнтах. 

Дослідження [9] та [11] показують, що конверсія лідів 

зростає, у середньому, на 26%, річний дохід – на 50%, 

а витрати на лід зменшуються на 25%. У дослідженні 

[12], кластерні методи застосовуються для групування 

населення за профілями ризику, що полегшує 

генерацію лідів. Аналогічно, у роботі [3], ШІ 

інтегрується з IoT для збору даних з носимих 

пристроїв, оптимізуючи лідогенерацію на 15–25%. 

Дослідження [13] показує, що чат-боти та системи 

автоматизації (наприклад, на базі NLP) взаємодіють із 

клієнтами через email чи соцмережі, генеруючи ліди з 

ROI до 70%.  

У свою чергу, використання моделей та методів 

ШІ має низку недоліків, недопрацювань та прогалин. 

Зокрема, автори [9] виділяють такі проблеми, як 

неповнота та низька якість наборів даних, що 

унеможливлює формування надійних прогнозів у lead 

scoring. Окремої уваги потребує питання алгоритмічної 

упередженості: моделі, навчені на історичних даних, 

часто відтворюють приховані соціальні чи 

демографічні патерни, що створює як етичні, так і 

регуляторні ризики [14]. Водночас складні моделі – 

зокрема алгоритми бустингу чи нейронні мережі – 

функціонують як “чорні скриньки”, що ускладнює їх 

пояснюваність і стримує довіру з боку страхових 

агентів. Це призводить до опору впровадження навіть 

у тих випадках, коли приріст точності є статистично 

значущим. Крім того, сучасні рішення демонструють 

обмежену здатність адаптуватися до динаміки ринку 

[15]: вони потребують частого перенавчання, яке 

вимагає додаткових ресурсів і підвищує витрати. 

Нарешті, інтеграція таких моделей у CRM-системи 

супроводжується проблемами сумісності та 

приватності даних, що є критичним бар’єром для малих 

агентів, які працюють у сфері продажу ануїтетів. У 

сукупності ці обмеження формують дослідницькі 

прогалини, що зумовлюють потребу у розробці більш 

прозорих, адаптивних та ресурсоефективних рішень. 

На основі аналізу джерел [3, 8, 9, 10, 11, 12, 13, 14, 

15] створено список методів і моделей штучного 

інтелекту з розрахунком процентів їх застосування у 

дослідженнях.  

Загальна кількість згадок моделей і методів: 96. 

Кількість унікальних методів: 36. Список 

найпопулярніших моделей і методів ШІ за частотою 

застосування зображено на рисунку 2.

 

Рис. 2. Найпопулярніші моделі і методи ШІ у процесі генерація лідів та пошук нових клієнтів
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Виявлення та оцінка потреб клієнтів. На цьому 

етапі робота страхового агента полягає у встановленні 

контакту з клієнтом, налагодженні діалогу та 

застосуванні різних методик для виявлення його 

ключових фінансових, особистісних або медичних 

цілей. Страховий агент повинен не лише зібрати 

первинну інформацію, а й інтерпретувати її у ширшому 

контексті потреб клієнта, що є критично важливим для 

формування персоналізованих страхових рішень. Саме 

на цьому рівні закладається основа для подальшої 

взаємодії, адже розуміння індивідуальних цілей і 

фінансових пріоритетів забезпечує відповідність 

запропонованих рішень реальним очікуванням і 

можливостям клієнта [16, 17]. Для агента цей процес не 

обмежується збором стандартизованих даних, а 

передбачає глибший аналіз – від оцінки фінансових 

намірів до визначення рівня готовності приймати 

ризики [18]. 

Оцінка потреб виконує кілька взаємопов’язаних 

функцій. По-перше, вона сприяє трансформації 

фрагментованої інформації у цілісну модель клієнта, 

що дозволяє створювати більш персоналізовані 

рішення. По-друге, правильно проведений аналіз 

знижує ризики помилкових рішень, допомагає 

відокремлювати істинні потреби від другорядних 

побажань та мінімізує вплив неякісних або неповних 

даних [16]. По-третє, він стає основою для побудови 

довіри й довгострокових відносин, що є визначальним 

чинником стабільності бізнес-моделі агента [19, 20]. 

Таким чином, процес виявлення та оцінки потреб 

клієнтів можна розглядати не лише як практичний 

інструмент у сфері страхових послуг, але й як 

критичний елемент моделі прийняття рішень, де якість 

даних, методи їх інтерпретації та точність прогнозів 

безпосередньо впливають на ефективність як взаємодії 

з клієнтом, так і всієї діяльності незалежного 

страхового агента. 

У дослідженнях [21] та [22] наголошується, що 

застосування Natural Language Processing (NLP) значно 

полегшує аналіз текстових і голосових даних клієнтів – 

від розшифровок дзвінків до чатів у CRM – з метою 

виявлення фінансових цілей, рівня толерантності до 

ризику та часових горизонтів інвестування. Для цього 

застосовуються сучасні трансформерні моделі, зокрема 

BERT та GPT, які демонструють високі результати у 

завданнях визначення наміру та вилучення ключових 

параметрів, досягаючи до 80% точності в 

автоматизованій оцінці потреб [23]. Паралельно 

кластеризаційні методи дозволяють групувати клієнтів 

за схожими профілями ризику чи поведінковими 

характеристиками. Це особливо важливо для страхових 

агентів, які мають справу з великими та різнорідними 

базами потенційних покупців ануїтетів. Окрім цього, 

активно впроваджуються conversational AI-системи 

(чат-боти та голосові асистенти), які проводять 

структуровані опитування клієнтів, скорочуючи 

середній час етапу виявлення потреб на 30–35% [24]. 

Дослідження також вказують і на низку недоліків. 

Перш за все значне поширення мають невпорядковані 

дані – короткі дзвінки, фрагментовані транскрипти, 

розмовна мова з акцентами та стороннім шумом, які 

потребують складної передобробки через ASR-

системи. Наприклад, у дослідженнях показано, що для 

досягнення пристойної точності ASR у специфічних 

доменах необхідне доналаштування на великих 

обсягах доменних даних з явним шумом та варіантами 

акцентів [25]. По-друге, нестача галузевих датасетів, 

особливо таких, що відображають особливості 

ануїтетів: фінансові терміни, мовні конструкції 

клієнтів, життєві ситуації, які впливають на потреби. 

Без таких даних моделі часто навчаються на загальних 

даних, що зменшує якість оцінки потреб у 

специфічному контексті [25]. Третя прогалина – ризики 

неправильного тлумачення намірів клієнта, що може 

призвести до юридичних чи етичних наслідків: 

неповне розуміння, некоректні рекомендації, або 

навіть порушення стандартів конфіденційності. Одним 

із шляхів цієї проблеми є відсутність чітких протоколів 

згоди користувача на запис і використання розмов, або 

недостатня обробка приватної інформації в самих 

ASR/NLP системах. Сучасні огляди з питань 

приватності у розпізнаванні мови підкреслюють, що 

мова сама по собі містить велику кількість додаткової 

інформації, яка може бути чутливою, і що без 

належного захисту і регуляторного контролю існують 

ризики витоку чи незаконного використання таких 

даних [26, 27, 28]. Четверта прогалина – адаптивність 

моделей до різних доменів та змінної поведінки 

клієнтів. Багато моделей добре працюють в одному 

контрольованому домені, але коли контекст 

змінюється (інші умови, нові терміни, інша 

платформа), їх продуктивність різко падає. 

Недостатньо досліджень, які б досліджували “domain 

adaptation” або “transfer learning” у специфічному 

контексті ануїтетів, або методів, які б підтримували 

моделі у реальному часі/змінному середовищі. 

На підставі опрацювання літературних джерел 

[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] 

сформовано перелік методів і моделей штучного 

інтелекту з визначенням частки їх використання у 

наукових дослідженнях. Загальна кількість 

зафіксованих згадок становить 568, з яких 39 є 

унікальними методами. Найбільш поширені моделі та 

методи ШІ за частотою застосування подано на 

рисунку 3. 

Пошук і підбір продукту страхової компанії. На 

етапі пошуку і підбору продукту страховий агент 

використовує всі доступні інструменти для аналізу та 

визначення найбільш відповідного ануїтетного 

продукту, орієнтуючись на потреби клієнта, 

ідентифіковані під час попереднього етапу “Виявлення 

та оцінка потреб клієнтів”. Сучасний фінансовий ринок 

характеризується різноманіттям і зростаючою 

складністю страхових та інвестиційних продуктів, що 

ускладнює для клієнта самостійне прийняття рішень. 

Більшість користувачів не володіють достатньою 

експертизою для адекватної оцінки ризиків і 

прогнозування результатів, саме тому страховий агент 

виконує роль посередника та експерта у цьому процесі 

[29, 30, 31]. 

Застосування методів рекомендаційних систем та 

інструментів штучного інтелекту у цьому процесі 
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відкриває нові можливості для оптимізації пошуку та 

порівняння продуктів [32]. Такі технології здатні 

зменшити інформаційне перевантаження, підвищити 

якість прийняття рішень, а також сприяти розвитку 

фінансової грамотності клієнтів [33, 34, 35, 36]. Таким 

чином, пошук і підбір ануїтетного продукту – це 

багатофакторний процес, у якому поєднуються 

експертиза страхового агента, персоналізовані 

рекомендації та сучасні технології аналізу даних, що 

разом задовольняють інтереси клієнта. 

 

Рис. 3. Найпопулярніші моделі і методи ШІ у процесі виявлення потреб

Автори дослідження [37] вказують, що 

застосування сучасних моделей і методів AI, зокрема 

гібридних рекомендаційних систем, ансамблевих 

моделей оцінки ризику та нейронних мереж, відкриває 

значні переваги. Зокрема, ResPoNet демонструє 

зменшення середньої похибки оцінки портфеля на 25% 

у порівнянні з традиційними моделями при обробці до 

100000 контрактів, забезпечуючи водночас швидкість і 

масштабованість у процесах аналізу великих даних. 

Подібні результати підтверджують. Подібні результати 

підтверджують дослідження [38], які 

продемонстрували, що нейронні мережі з широкими 

шарами перевищують дерева рішень за точністю 

оцінки вартості ануїтетних портфелів на понад 10% у 

середніх сценаріях. Окремої уваги заслуговують 

рекомендаційні системи у страхуванні: у тестових 

сценаріях гібридні підходи (content-based + 

collaborative) досягають значень NDCG@10 у межах 

0.30–0.60, що відповідає рівню комерційно значущої 

ефективності при маркетингу складних фінансових 

продуктів [39]. У підсумку, ці результати 

демонструють, що поєднання рекомендаційних систем 

із моделями оцінки ризику створює основу для 

адаптивної підтримки прийняття рішень у сфері 

страхування та ануїтетів. 

Водночас наявні дослідження фіксують низку 

обмежень, що ускладнюють практичне застосування 

таких моделей. По-перше, для ануїтетів характерна 

висока розрідженість даних: у більшості клієнтів 

відсутня тривала історія купівель, що зумовлює ефект 

“холодного старту” та знижує ефективність 

рекомендаційних систем, особливо у колаборативних 

сценаріях. По-друге, метрики ефективності, зокрема 

NDCG чи Precision@K, хоч і відображають якість 

рекомендацій у статистичному вимірі, не гарантують 

фінансової оптимальності чи відповідності 

регуляторним вимогам – висока NDCG@10 не означає, 

що запропонований продукт є юридично коректним 

або фідуціарно оптимальним для клієнта [39]. По-

третє, наявні моделі рідко інтегрують макроекономічні 

показники та рейтингову інформацію страхових 

компаній у режимі реального часу, що робить їх менш 

чутливими до коливань ринку. Нарешті, регуляторні 

бар’єри, пов’язані з прозорістю алгоритмів та захистом 

прав споживачів, вимагають інтеграції пояснюваного 

ШІ у рекомендаційні системи для страхування [40]. 

У результаті аналізу наукових публікацій [29, 30, 

31, 32, 33, 34, 35, 36, 37, 38, 39, 40] було укладено 

перелік методів і моделей штучного інтелекту з 

оцінкою відсоткового рівня їх використання. Загальна 

кількість згадувань методів і моделей дорівнює 202, 

при цьому кількість унікальних підходів складає 46. 

Розподіл найпопулярніших моделей і методів ШІ 

представлено на рисунку 4. 

Презентація пропозицій та консультація 

клієнта. Після завершення етапу підбору ануїтетних 

продуктів, страховий агент переходить до 

безпосередньої взаємодії з клієнтом, яка передбачає 

презентацію сформованих пропозицій. На цьому етапі 

акцент робиться на детальному поясненні 

характеристик і ключових параметрів кожного 

продукту, а також на аргументації причин їхньої 

доцільності для конкретної ситуації клієнта. Процес 

презентації зазвичай супроводжується активною 

консультаційною взаємодією: клієнт ставить 

уточнювальні запитання, висловлює занепокоєння та 

отримує необхідні роз’яснення для формування 

обґрунтованого рішення. 
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Рис. 4. Найпопулярніші моделі і методи ШІ у процесі пошуку і підбору продукту

Цей процес можна інтерпретувати через поєднання 

кількох підходів: моделі процесуальної консультації, 

що акцентує увагу на комунікативній динаміці та 

спільній діагностиці, та моделі спільного прийняття 

рішень, яка підкреслює важливість залученості клієнта 

до вибору оптимального рішення [41, 42]. Додатково, 

сучасні інструменти штучного інтелекту відкривають 

можливості автоматизації створення презентаційних 

матеріалів, полегшуючи підготовку візуального 

контенту та підвищуючи продуктивність агента [43]. 

Разом з тим, клієнт може відмовитися від 

запропонованого ануїтету з низки суб’єктивних 

причин, серед яких – невідповідність окремих 

характеристик продукту очікуванням, надмірні 

обмеження, або інші особисті чинники. У випадку такої 

відмови агент повертається до попереднього етапу 

“Пошук і підбір продукту страхової компанії”, 

ініціюючи повторний цикл добору альтернативних 

варіантів. Таким чином,  процес “презентація та 

консультація” є не лише етапом інформування, а й 

інтерактивним процесом комунікації, в якому 

поєднуються професійні знання агента, очікування 

клієнта та цифрові технології підтримки рішень. Саме 

від ефективності цієї взаємодії залежить якість 

кінцевого вибору, рівень задоволеності клієнта та 

довгострокова успішність страхових відносин. 

Згідно зі статтею [44], при використанні тонко 

налаштованих вбудованих моделей разом із великими 

мовними моделями та reasoning-ітераціями RAG-

система досягає значного зростання точності 

відповідей, іноді перевищуючи загальні моделі на 

кілька відсоткових пунктів, зокрема, для фінансових 

запитів точність підвищується на 5-10% від базових 

моделей без доменної адаптації. Крім того, 

дослідження [45] повідомляє, що інтеграція LLM для 

автоматизації знань, наприклад, формулювання частин 

консультацій або контент-генерації, призводить до 

помітної економії часу на операційні завдання, 

збільшуючи пропускну здатність консультаційного 

процесу без зниження якості обслуговування.  

Незважаючи на зазначені переваги, існують 

вагомі обмеження, які слід враховувати при 

застосуванні ШІ у презентації пропозицій та 

консультаціях клієнта. Перш за все, багато результатів 

надходить із case-studies або внутрішніх звітів 

компаній, але незалежні рандомізовані контрольовані 

дослідження у цьому контексті трапляються рідко, що 

знижує надійність висновків про універсальну 

ефективність. По-друге, генеративні моделі можуть 

створювати неточні або навіть хибні твердження, 

особливо якщо вони не підтримуються достовірними 

джерелами – без RAG чи факт-верифікації ризик 

помилкового представлення продукту чи умов може 

бути значним. По-третє, регуляторний і етичний 

виміри часто залишаються поза увагою: рекомендації 

фінансових продуктів вимагають прозорості, 

пояснення вартості, ризиків і умов, що не завжди 

забезпечується складними моделями або швидкими 

генеративними скриптами. Нарешті, у літературі 

зафіксовано, що доменна адаптація має критичне 

значення: моделі, не натреновані на фінансові та 

страхові діалоги або ануїтетні продукти, часто 

демонструють знижену релевантність та зменшену 

довіру клієнтів або агентів до результатів. 

На основі дослідження джерел [41, 42, 43, 44, 45] 

сформовано узагальнений перелік методів та моделей 

штучного інтелекту з розрахунком частоти їх 

застосування. Загалом виявлено 156 згадок, що 

охоплюють 17 унікальних методів. Перелік найбільш 

вживаних моделей і методів ШІ наведено на рисунку 5.
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Рис. 5. Найпопулярніші моделі і методи ШІ у процесі презентації пропозицій

Подання заявки та оцінка ризиків клієнта. На 

цьому етапі відбувається перехід від консультаційно-

інформаційної роботи з клієнтом до формалізованої 

взаємодії зі страховою компанією. Незалежний агент 

виконує роль не лише посередника у зборі даних, але й 

консультанта, який забезпечує відповідність обраного 

фінансового продукту реальним потребам і фінансовим 

можливостям клієнта. Таким чином, агент виступає 

первинним “фільтром”, що зменшує ризик 

невідповідності заявки вимогам страховика. Подання 

заявки включає заповнення пакету офіційних 

документів, які містять персональні, фінансові та 

ідентифікаційні відомості клієнта. На практиці цей 

процес дедалі частіше реалізується через цифрові 

платформи, що дозволяють динамічну валідацію 

даних, інтеграцію з зовнішніми базами, 

автоматизовану перевірку повноти інформації та 

відстеження статусу заявки [46, 47, 48, 49]. Для 

незалежного агента це означає можливість 

мінімізувати рутинні адміністративні помилки та 

зосередитися на забезпеченні відповідності продукту 

регуляторним нормам і очікуванням клієнта. Після 

надсилання заявки до страхової компанії починається 

процес оцінки ризиків клієнта також відомий як 

андеррайтинг. У випадку ануїтетів андеррайтинг 

зосереджується переважно на фінансових 

характеристиках клієнта: рівні доходів, наявності 

активів та загальній платоспроможності. 

У разі відмови страхової компанії у випуску 

ануїтетного полісу після завершення андеррайтингу 

процес не вважається остаточно завершеним. 

Незалежний страховий агент у такій ситуації виконує 

роль консультанта, пояснюючи клієнту загальні 

причини відмови. Водночас агент спільно з клієнтом 

повертається до етапу аналізу фінансових потреб і 

розгляду альтернативних варіантів, зокрема інших 

типів ануїтетів або страхових та інвестиційних 

продуктів, що краще відповідають профілю ризику та 

фінансовим можливостям. Таким чином, навіть у 

випадку відмови зберігається безперервність процесу 

обслуговування клієнта та забезпечується адаптивність 

продажу до індивідуальних обставин. 

Сучасні технології автоматизації та алгоритми 

штучного інтелекту дедалі активніше застосовуються 

для оцінки ризиків, що дозволяє скоротити час 

розгляду, підвищити точність аналізу та зменшити 

вплив людського фактору [5]. Таким чином, подання 

заявки та андеррайтинг у сфері продажу ануїтетів слід 

розглядати не лише як адміністративно-формальний 

етап, а як комплексну процедуру, що забезпечує баланс 

між інтересами клієнта, фінансовою стабільністю 

страховика та професійною відповідальністю 

незалежного агента. 

У низці досліджень показано, що ансамблеві 

моделі і гібридні рішення здатні забезпечити високі 

показники точності та оперативності в андеррайтингу. 

Наприклад, у статті [50]  описується використання 

моделі XGBoost, яка досягає 0.91 за метрикою AUC у 

медичному андеррайтингу, що значно перевищує 

базовий випадковий прогноз. Також дослідження [51] 

демонструє, що моделі із прогнозною аналітикою 

здатні скорочувати час оцінки ризиків та підвищити 

ефективність прийняття рішень, дозволяючи 

андеррайтерам зосередитися на складніших випадках, 

тоді як рутинні або низькоризикові заявки 

обробляються автоматично. Крім того, робота [52] 

показує, що застосування методів XAI, таких як SHAP, 

local effects та rule extraction у поєднанні з ML-моделлю 

дозволяє зберігати прозорість рішень, що сприяє 

підвищенню довіри клієнтів і відповідає регуляторним 

вимогам, без значної втрати в точності моделі. 

Незважаючи на значні переваги, існують важливі 

недоліки та прогалини, що обмежують практичне 

застосування моделей. Історичні дані можуть містити 
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соціально-економічні непрямі індикатоии, які моделі 

невірно використовують, призводячи до 

дискримінаційних результатів. Автори [53] 

зазначають, що автоматизація може підвищити 

оперативну ефективність, але водночас збільшує ризик 

дискримінації, коли нейтральні ознаки стають 

непрямими індикаторами для заборонених 

характеристик. Також існує відсутність прозорості та 

пояснюваності у тих випадках, коли моделі 

використовують спрощені ML-архітектури або коли 

логіка рішення належить стороннім розробникам. Без 

XAI або методів rule extraction агенти та регулятори 

іноді не мають змоги зрозуміти, чому заявка була 

відхилена, що підтверджується авторами [12], які 

зазначають, що в практиках андеррайтингу більшість 

моделей це все ще “чорні скриньки”, і що методи, які 

забезпечують інтерпретацію, використовуються, але не 

універсально. Крім того, існує проблема з новими або 

нетиповими заявами: моделі часто створені для 

“середньостатистичних” випадків, але при 

нестандартних або складних умовах, або для клієнтів із 

нестандартним ризиковим профілем, потрібне 

залучення людини, що відчутно підвищує 

ресурсоємність. Нарешті, інтеграція зовнішніх API, 

правовий та нормативний нагляд часто є 

фрагментованими і повільними, що може стримувати 

адаптивність і масштабність систем. 

Проведений аналіз наукових джерел [5, 12, 46, 47, 

48, 49, 50, 51, 52, 53] дозволив сформувати список 

методів і моделей штучного інтелекту та визначити 

відсоток їх використання у дослідженнях. Загальна 

кількість згадок складає 150, з яких 35 належать до 

унікальних методів. Найпоширеніші моделі й методи 

ШІ за частотою застосування відображено на 

рисунку 6.

 

Рис. 6. Найпопулярніші моделі і методи ШІ у процесі подання заявки та оцінці ризиків

Оформлення та доставка ануїтетного полісу. 

Оформлення та доставка ануїтетного полісу становлять 

завершальний етап у процесі продажу ануїтетів і мають 

вирішальне значення для підтвердження юридичної 

сили договору та формування довіри клієнта до 

страховика. Після позитивного рішення андеррайтингу 

страхова компанія випускає поліс, який закріплює 

ключові умови: розмір премій, порядок і строки 

виплат, а також інші договірні зобов’язання. На цьому 

етапі незалежний страховий агент виконує функцію 

посередника та консультанта: він перевіряє 

коректність виданого документа, пояснює клієнту його 

зміст і практичні наслідки, а також контролює 

своєчасність отримання полісу.  

Традиційно доставка полісів здійснювалася у 

паперовій формі поштовими відправленнями, що було 

пов’язано з часовими затримками та ризиком втрати 

документів [4, 54, 55]. Сучасні цифрові рішення 

докорінно трансформували цей процес, забезпечивши 

можливість електронного оформлення, цифрового 

підпису та миттєвої доставки електронної копії полісу 

клієнту. Такі технології знижують операційні витрати, 

підвищують точність і прозорість процесу, а також 

дозволяють клієнтам у зручний спосіб зберігати та 

відстежувати свої документи [56]. 

Інтеграція автоматизованих систем і алгоритмів 

штучного інтелекту додатково оптимізує етап 

оформлення: від виявлення помилок у даних до 

генерації персоналізованих повідомлень про активацію 

полісу. Для незалежного агента це означає перехід від 

рутинної адміністративної роботи до більш 

консультативної та сервісно-орієнтованої ролі, яка 

спрямована на підвищення клієнтського досвіду та 

довгострокового утримання клієнтів [57, 58]. Таким 

чином, оформлення та доставка ануїтетного полісу в 

сучасних умовах слід розглядати не як формальну 

передачу документа, а як комплексний, цифрово-

трансформований процес, що забезпечує юридичну 

https://www.mdpi.com/2227-9091/10/12/230?utm_source=chatgpt.com
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завершеність угоди, зручність для клієнта та 

професійну відповідальність агента. 

ШІ-інструменти, зокрема методи роботизованої 

автоматизації процесів у поєднанні з технологіями 

документної обробки природної мови і методами 

оркестрації робочого процесу, продемонстрували 

значне скорочення часу обробки заяв і документів у 

страхуванні. Наприклад, автор [59] повідомляє про 

зменшення часових витрат для стандартних форм 

обробки претензій до менше ніж 5 хвилин порівняно з 

72 годинами до автоматизації; це майже 90% 

скорочення часу при високій точності стандартних 

форм. Також робота [3] підкреслює, що методи 

роботизованої автоматизації процесів разом із 

автоматизацією обробки документів та прогнозною 

аналітикою полегшують видачу полісів, зменшуючи 

операційні витрати і підвищуючи ефективність 

робочих процесів у галузі ануїтетів і страхування 

життя. Загалом, ці методи дозволяють значно 

зменшити ручну працю, підвищити точність введення 

даних та пришвидшити випуск поліса, що позитивно 

впливає на якість обслуговування клієнтів і 

задоволеність користувачів. 

Разом з перевагами існують суттєві обмеження, 

які не дозволяють універсально застосовувати ці 

рішення без відповідних заходів. По-перше, методи 

роботизованої автоматизації процесів дуже чутливі до 

змін інтерфейсів користувача, структури форм чи 

послідовностей етапів: оновлення у програмному 

забезпеченні можуть призвести до помилок 

автоматизованих сценаріїв, що вимагає постійного 

технічного обслуговування та людського втручання. 

По-друге, виняткові або нестандартні випадки, 

наприклад, сильно пошкоджені документи або медичні 

форми з незвичним форматуванням все ще потребують 

ручної або напівавтоматичної обробки, оскільки 

автоматичні методи оптичного розпізнавання символів 

та обробки природної мови часто не справляються з 

високим рівнем шуму або несподіваними структурами. 

По-третє, існує ризик помилок у масовому випуску 

поліса, якщо автоматизація працює без надійного 

моніторингу: наприклад, у документній автоматизації, 

якщо система визнає неправильні або неповні дані як 

коректні, це може призвести до юридичних чи 

фінансових наслідків. Автори, що аналізують вплив 

цифрової трансформації, відзначають також загрози 

кібербезпеки і порушення конфіденційності, особливо 

коли дані передаються між системами, або коли 

сторонні AI-сервіси беруть участь у обробці 

документів [13]. 

У ході аналізу літературних джерел [3, 4, 13, 54, 

55, 56, 57, 58, 59] було систематизовано методи й 

моделі штучного інтелекту з урахуванням відсотка їх 

використання. Загальна кількість зафіксованих 

згадувань становить 87, при цьому ідентифіковано 70 

унікальних методів. Частотний розподіл найбільш 

популярних моделей і методів ШІ представлено на 

рисунку 7.

 

Рис. 7. Найпопулярніші моделі і методи ШІ у процесі оформлення та доставки ануїтетного полісу

Післяпродажна взаємодія та утримання 

клієнтів. Після оформлення та доставки ануїтетного 

полісу починається етап післяпродажної взаємодії та 

утримання клієнта, що має не менше значення, ніж 

первинний продаж. Незалежний страховий агент на 

цьому етапі виконує функції консультанта та 

посередника між клієнтом і страховою компанією: 

роз’яснює умови полісу, контролює дотримання 

періоду “free look”, відповідає на запитання клієнта та 

забезпечує належний супровід у випадку змін 

життєвих обставин чи фінансових цілей. Недостатня 

увага до післяпродажного супроводу може призвести 

до відтоку клієнтів, репутаційних втрат і зниження 

довіри до агента [60, 61, 62]. 
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Сучасні клієнти, яких часто відносять до “нового 

покоління клієнтів сервісу”, характеризуються вищими 

очікуваннями, орієнтацією на прозорість та 

безперервність комунікації [63, 64]. У відповідь на ці 

виклики ключову роль починають відігравати цифрові 

інструменти, зокрема CRM-системи та технології 

штучного інтелекту. Використання ШІ та машинного 

навчання дозволяє агентам і страховим компаніям 

прогнозувати ризик відтоку клієнтів, сегментувати їх 

за рівнем задоволеності, формувати персоналізовані 

стратегії утримання та оптимізувати клієнтський 

досвід завдяки аналізу поведінкових даних і 

настроїв [65, 66, 67, 68, 69]. 

У контексті ануїтетів, що є довгостроковими 

фінансовими інструментами із суттєвими 

зобов’язаннями, ефективна післяпродажна взаємодія 

набуває особливої ваги. Вона сприяє підтримці 

стабільних відносин між клієнтом та агентом, 

управлінню очікуваннями, максимізації життєвої 

цінності клієнта, а також створює підґрунтя для нових 

фінансових рішень у майбутньому. 

У дослідженні [70] показано, що ансамблеві 

моделі та підходи глибокого навчання здатні досягати 

дуже високих показників у задачах утримання клієнтів 

– наприклад, на страховому наборі даних модель 

досягла точності 95.96% та високого F1-score. Це 

свідчить, що у контрольованих умовах із хорошими 

даними ШІ-системи можуть ефективно ідентифікувати 

клієнтів із ризиком втрати і підтримувати їх утримання. 

Інші дослідження підтверджують, що класифікаційні 

моделі як XGBoost і Random Forest залишаються 

конкурентними, особливо коли балансування класів та 

підбір ознак виконуються коректно. Наприклад, 

дослідження [71] вказують, що застосування відбору 

ознак, балансування вибірки та ensemble-методів може 

забезпечити покращення точності і F1-метрики на 5-10 

% у порівнянні зі стандартними базовими моделями. 

Крім того, моделі застосовують індекс лояльності 

клієнтів та аналіз настроїв відгуків, щоб краще 

зрозуміти задоволення клєінів і емоційне ставлення – 

це допомагає коригувати персоналізовані кампанії 

утримання. 

Незважаючи на обнадійливі результати, існують 

значні обмеження, що вповільнюють трансформацію 

потенціалу у практичне впровадження. По-перше, 

багато моделей демонструють високі показники за 

метриками Accuracy / F1 / AUC у контрольованих або 

дослідницьких умовах, але при застосуванні у 

реальних середовищах результати часто бувають 

значно гіршими – це обумовлено шумом даних, 

неповними ознаками та змінами поведінки клієнтів. У 

тому ж дослідженні [70] зазначено, що хоча для набору 

даних для страхової галузі досягнуто Accuracy на рівні 

95.96%, для інших секторів таких, як телеком або 

інтернет-постачання послуг моделі мали більшу 

нестабільність. По-друге, зростає ризик порушення 

приватності, особливо коли моделі використовують 

великі обсяги даних про взаємодії клієнтів або відкриті 

тексти відгуків. У контексті законодавства США чи ЄС 

не завжди є чіткі рамки для дозволу використання 

таких даних. По-третє, етичні та регуляторні виклики: 

надмірна персоналізація чи сегментація може 

призводити до відчуття дискримінації або 

несправедливості, якщо певні групи клієнтів 

автоматично виключаються з вигідних пропозицій на 

основі моделей. І нарешті, ресурсні та операційні 

бар’єри: підтримка моделей, що працюють у 

production, вимагає інфраструктури, моніторингу, 

перетренування, а також відповідних команд та 

спеціалістів, що не завжди доступно. 

На основі опрацювання наукових джерел [60, 61, 

62, 63, 64, 65, 66, 67, 68, 69, 70, 71] складено перелік 

методів і моделей штучного інтелекту з визначенням 

частоти їх застосування у дослідженнях. Загалом 

зафіксовано 67 згадок, що відповідають 19 унікальним 

методам. Найбільш поширені моделі та методи ШІ 

подано на рисунку 8.

 

Рис. 8. Найпопулярніші моделі і методи ШІ у процесі післяпродажна взаємодія та утримання клієнтів

https://www.mdpi.com/2078-2489/16/7/537?utm_source=chatgpt.com
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Практичне впровадження. Практична реалізація 

запропонованої процесної декомпозиції із 

зіставленням моделей штучного інтелекту з етапами 

бізнес-процесів продажу ануїтетів доцільна на основі 

поетапного підходу що охоплює підготовку, 

інтеграцію ШІ-рішень та подальший моніторинг їх 

ефективності. Такий підхід ґрунтується на 

узагальненні сучасних платформних рішень і 

прикладних кейсів, представлених у науковій 

літературі [2, 3, 7, 13, 37, 70], та враховує специфіку 

діяльності незалежних страхових агентів, які, як 

правило, функціонують в умовах обмежених ресурсів.  

На підготовчому етапі доцільним є проведення 

аудиту наявних бізнес-процесів і даних клієнтської 

взаємодії. Ключовим завданням є подолання 

фрагментованості інформації шляхом інтеграції з 

CRM-системами, що розглядається як один з базових 

чинників успішного впровадження ШІ-рішень [2, 4]. 

Для початкового етапу генерації лідів можуть 

застосовуватися відносно прості та інтерпретовані ML-

моделі, зокрема логістична регресія або ансамблеві 

методи, інтегровані з інструментами автоматизованого 

маркетингу. Як свідчать результати емпіричних 

досліджень, впровадження таких підходів навіть у 

невеликих агентствах забезпечує суттєве зростання 

конверсії за рахунок аналізу історичних клієнтських 

даних [9].  

На етапі виявлення та оцінки потреб клієнтів 

доцільним є використання NLP-інструментів для 

аналізу транскриптів дзвінків і текстових комунікацій. 

Застосування моделей класу BERT або сучасних 

генеративних моделей дозволяє автоматизувати 

первинну інтерпретацію запитів клієнтів і скоротити 

час попередньої оцінки, що підтверджується 

результатами впровадження conversational AI у 

страхових організаціях [21, 23]. Для незалежних 

агентів практичним є поетапний перехід від типових 

рішень до доменно-орієнтованої кастомізації. 

Під час пошуку та підбору ануїтетних продуктів 

ефективними є гібридні рекомендаційні системи, які 

поєднують контентно-орієнтовані та колаборативні 

підходи. Такі системи можуть бути інтегровані з 

базами даних страхових компаній через програмні 

інтерфейси. Дослідження показують, що застосування 

нейронних моделей для оцінювання ануїтетних 

портфелів дозволяє суттєво зменшити похибку 

розрахунків і підвищити якість прийняття рішень [37]. 

Для невеликих агентів можливе використання 

спрощених локальних моделей у поєднанні з 

табличними інструментами для порівняння 

альтернатив. 

На етапах презентації пропозицій і консультації 

клієнтів генеративні моделі ШІ можуть 

застосовуватися для підготовки персоналізованих 

матеріалів і сценаріїв комунікації. За даними 

прикладних досліджень, це дозволяє суттєво скоротити 

час підготовки презентацій та підвищити рівень 

індивідуалізації консультацій [43]. Водночас ключова 

роль у фінальному рішенні залишається за агентом, що 

відповідає вимогам регуляторів і принципам 

відповідального використання ШІ. 

Подання заявок, андеррайтинг та оформлення 

полісів можуть бути частково автоматизовані за 

допомогою моделей оцінювання ризиків і агентних 

ШІ-рішень, орієнтованих на оркестрацію 

документообігу. Практичні кейси свідчать про істотне 

скорочення часу обробки заявок і зниження 

адміністративного навантаження на 

агентів [46, 50, 55]. 

На післяпродажному етапі застосування моделей 

прогнозування відтоку клієнтів у поєднанні з 

персоналізованими комунікаційними кампаніями 

дозволяє підвищити рівень утримання клієнтів та 

довгострокову цінність портфеля [70]. 

Завершальним елементом практичного 

впровадження є постійний моніторинг і оптимізація 

ШІ-рішень. Доцільним є використання A/B-тестування 

для порівняння автоматизованих і традиційних 

підходів, а також контроль ключових показників 

ефективності, зокрема конверсії, рентабельності 

інвестицій та точності моделей. Важливим аспектом 

залишається дотримання регуляторних вимог SEC та 

NAIC, що зумовлює необхідність застосування методів 

пояснюваного ШІ для обґрунтування прийнятих 

рішень [12, 40]. 

Отже, впровадження ШІ дозволяє автоматизувати 

значну частку рутинних операцій і змістити фокус 

діяльності незалежного страхового агента на 

консультаційну та клієнтоорієнтовану складову, що 

підтверджує практичну доцільність запропонованого 

підходу [7]. 

 

Проблеми впровадження ШІ. Попри помітний 

прогрес у впровадженні інструментів штучного 

інтелекту (ШІ) у сфері страхування, зокрема у 

продажах ануїтетів, залишається ряд суттєвих викликів 

і проблем, що ускладнюють їхнє широке використання. 

Одним із ключових аспектів є відсутність уніфікованої 

класифікації та систематизації ШІ-рішень, що 

ускладнює визначення їхньої ефективності та вибір 

оптимальних моделей для страхових компаній і 

агентів. Висока складність страхових продуктів, 

посилена жорсткими регуляторними вимогами, 

зумовлює потребу в адаптивних рішеннях ШІ, які 

можуть поєднувати глибоку аналітику великих даних 

із персоналізованим підходом до клієнтів. 

Серед технічних бар'єрів впровадження 

помітними є проблеми інтеграції інноваційних рішень 

із застарілими інформаційними системами, обробка 

фрагментованих та неповних даних, а також 

забезпечення прозорості алгоритмів, що суттєво 

впливає на довіру клієнтів і регуляторів. Важливою є 

також проблема оцінки ефективності інвестицій у ШІ, 

яка залишається складною через нестачу 

довготривалих досліджень і практичних кейсів. 

Необхідність дотримання законодавчих норм 

щодо захисту персональних даних та етичних 

стандартів висуває додаткові вимоги до проєктування 

та використання ШІ-систем. Зокрема, надмірна 

персоналізація може призводити до несправедливої 

дискримінації певних груп клієнтів, що також потребує 

контролю і регулювання. Крім того, впровадження ШІ 
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вимагає значних ресурсів для підтримки, моніторингу і 

періодичного навчання моделей, а також забезпечення 

відповідної кваліфікації персоналу. Отже, ефективне 

впровадження ШІ можливе лише за умови 

комплексного підходу, що поєднує технічні, 

організаційні та регуляторні аспекти, а також 

інвестиції в людський капітал і розвиток корпоративної 

культури. 

 

Висновки. Штучний інтелект дедалі активніше 

проникає у всі ключові етапи бізнес-процесів продажу 

ануїтетів, формуючи нову архітектуру створення 

цінності як для клієнтів, так і для незалежних 

страхових агентів. Вплив технологій ШІ не є 

однорідним: різні його типи по-різному 

трансформують процеси, підвищуючи їхню 

ефективність, точність та гнучкість. Проведений аналіз 

сучасної наукової та прикладної літератури показав, 

що можна  виокремити три базові категорії ШІ, що 

знаходять практичне застосування у сфері 

страхування: аналітичний, генеративний та агентний. 

Аналітичний ШІ ґрунтується на методах 

машинного навчання, орієнтованих на роботу зі 

структурованими даними. У контексті продажу 

ануїтетів він виконує функції предиктивного скорингу 

потенційних клієнтів, оцінки фінансових ризиків, а 

також виявлення випадків шахрайства. Такий підхід 

дозволяє підвищувати точність прогнозів, скорочувати 

ймовірність помилкових рішень і знижувати 

транзакційні витрати, що безпосередньо впливає на 

рентабельність діяльності агента. Використовується на 

етапах “Генерація лідів та пошук нових клієнтів”, 

“Пошук і підбір продукту страхової компанії“ та 

“Оформлення та доставка ануїтетного полісу”. 

Генеративний ШІ відкриває можливості роботи з 

неструктурованими даними: текстами, аудіо та 

візуальними матеріалами, та створення нового 

контенту. У сфері страхування його ключовими 

точками застосування є гіперперсоналізована 

комунікація з клієнтами на етапах “Виявлення та 

оцінка потреб клієнтів” та “Післяпродажна взаємодія 

та утримання клієнтів”, автоматизоване резюмування 

складних документів для андеррайтингу на етапі 

“Подання заявки та оцінка ризиків клієнта” та 

підготовка електронних листів, звітів і презентацій на 

етапі “Презентація пропозицій та консультація 

клієнта”. Використання таких інструментів не лише 

зменшує адміністративне навантаження, а й підвищує 

якість взаємодії з клієнтом завдяки більш 

цілеспрямованій та адаптивній комунікації. 

Агентний ШІ являє собою нову парадигму, у 

межах якої автономні цифрові агенти здатні самостійно 

оркеструвати цілі робочі процеси. Це включає 

автоматизацію онбордингу клієнтів, обробку 

стандартних запитів чи навіть повний супровід 

адміністративних операцій. Мінімізація людського 

втручання в рутинні завдання створює для страхових 

агентів можливість зосередитися на стратегічно 

важливих аспектах роботи – побудові довіри, 

формуванні довгострокових відносин і розвитку 

клієнтської бази. 

Емпіричні дані, наведених графіків,  свідчать про 

те, що впровадження зазначених технологій вже 

демонструє відчутні результати: підвищення 

показників успішності нових агентів на 10–20%, 

зростання коефіцієнта конверсії продажів у тих самих 

межах та суттєве скорочення адміністративного 

навантаження, яке традиційно займає понад половину 

робочого часу агентів. Це свідчить про 

трансформаційний характер ШІ, який не лише 

оптимізує окремі етапи бізнес-процесу, а й формує 

нову логіку функціонування незалежного страхового 

агента в умовах цифрової економіки. 

 

Подальше дослідження. Незважаючи на значні 

досягнення у впровадженні інструментів штучного 

інтелекту у сфері продажу ануїтетів, низка критичних 

проблем залишається невирішеними, що створює 

передумови для подальших досліджень.  

По-перше, відсутність уніфікованої класифікації 

та систематизації застосовуваних ШІ-рішень суттєво 

ускладнює їхню порівняльну оцінку, а отже, й 

обґрунтований вибір оптимальних моделей для 

страхових агентів та компаній. 

По-друге, висока складність ануїтетних 

продуктів, посилена вимогами регуляторів (SEC та 

NAIC), зумовлює необхідність розробки адаптивних 

ШІ-систем, здатних інтегрувати аналіз великих даних з 

індивідуалізованим підходом до клієнта. 

По-третє, проблема прозорості алгоритмів суттєво 

обмежує довіру як клієнтів, так і регуляторних органів 

до автоматизованих рішень. 

Окрім того, недостатньо вивченою залишається 

ефективність ШІ у довгостроковому управлінні 

ризиками, консультуванні клієнтів та 

післяпродажному супроводі. У цьому контексті 

особливої ваги набуває подальше дослідження з 

визначенням відсоткового внеску ШІ та людського 

фактору в кожному з ключових процесів – від оцінки 

потреб клієнта до моніторингу контрактів. Кількісна 

оцінка такого залучення дозволить не лише об’єктивно 

порівнювати ефективність гібридних моделей, але й 

розробити рекомендації щодо оптимального балансу 

автоматизації та людської експертизи, що є критичним 

для підвищення довіри, зниження ризиків та 

забезпечення регуляторної відповідності. 

Для подальшого уточнення окреслених напрямів 

доцільним є посилення емпіричної складової 

досліджень, спрямованих на кількісну оцінку ефектів 

упровадження інструментів штучного інтелекту в 

діяльність незалежних страхових агентів. Насамперед 

перспективними є прикладні кейс-стаді впровадження 

у реальних агентствах, зокрема порівняльний аналіз 

груп незалежних агентів, які застосовують ШІ-рішення 

для генерації лідів, із агентами, що використовують 

традиційні підходи. Такі дослідження дозволять 

оцінити вплив ШІ на показники економічної 

ефективності на основі даних CRM-систем і 

стандартних статистичних методів аналізу. 

Другим важливим напрямом є експериментальні 

дослідження взаємодії людського чинника та 

автоматизованих систем прийняття рішень. Подібні 
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методології з використанням cluster analysis та Brown 

model для DSS в стратегічному плануванні цифрових 

технологій можуть бути адаптовані для оцінки ШІ в 

страхуванні [72]. Зокрема, аналіз застосування A/B-

тестування на етапах підготовки презентацій і 

консультацій клієнтів, дозволить порівняти результати 

використання генеративних ШІ-інструментів із 

традиційною ручною підготовкою матеріалів. 

Поєднання кількісних показників (рівень утримання 

клієнтів, відтік) з опитуваннями клієнтів щодо якості 

взаємодії створює основу для оцінки довгострокових 

ефектів використання ШІ в сегменті ануїтетів, для 

якого наразі бракує систематизованих емпіричних 

даних. 

Реалізація зазначених напрямів забезпечить 

перехід від переважно оглядових і концептуальних 

досліджень до формування практично орієнтованих 

рекомендацій, що сприятимуть підвищенню 

ефективності та зрілості застосування штучного 

інтелекту в галузі продажу ануїтетів. 
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