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TOWARDS HYBRID CLOUD INFRASTRUCTURE QUALITY ASSESSMENT MODEL 

The paper presents a hybrid model for the cloud infrastructure quality assessment, which combines subjective expert assessments with objective results 
of statistical analysis. The proposed model, called Hybrid Expert-derived with Entropy-based Weighted Sum Model (HEE-WSM), combines the Analytic 

Hierarchy Process (AHP) to determine weights based on expert assessments and the entropy-based approach to calculate weights using real data. The 

proposed HEE-WSM model is a novel approach that takes into account both expert judgments and cloud environment monitoring data. Eight criteria 
(such as availability, reliability, latency, scalability, performance efficiency, cost, security compliance, and support responsiveness) based on the 

international standards NIST SP 800-145 and ISO/IEC 25010 are proposed for the cloud infrastructure quality assessment. These criteria are divided 

into “benefit” and “cost” criteria, which is necessary to ensure normalization and proper comparison of different quality metrics. A hybrid mechanism 
for determining weighting coefficients allows balancing the weighting coefficients determined on the basis of AHP and the entropy approach using an 

adjustable coefficient that provides flexibility depending on decision-making needs. Thus, the flexibility of the proposed model is ensured by the ability 

to adjust the influence of subjective and objective weights of criteria. The final quality assessment is performed using the Weighted Sum Model that 
aggregates normalized quality metric scores for each alternative. To demonstrate the robustness of the proposed approach, ten leading cloud providers 

were analyzed in this study, including Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP), Alibaba Cloud, and several 

others. The obtained results demonstrated that the proposed model allows for effective evaluation of cloud services, with GCP receiving the highest total 
quality score. The proposed approach can be considered an adaptive, transparent, and useful tool for implementation in decision support systems for 

cloud infrastructure management. The proposed model can be applied in organizations and enterprises for the informed selection of cloud service 

providers. Future research includes the integration of real-time data monitoring and the application of machine learning methods for automatic adjustment 
of quality criteria weights. 

Keywords: cloud infrastructure quality assessment, expert judgment, entropy-based assessment, hybrid assessment model, quality criteria, cloud 

service quality metrics, decision making. 

А. М. КОПП, Р. Б. ДАШКІВСЬКИЙ 

ПРО ГІБРИДНУ МОДЕЛЬ ОЦІНЮВАННЯ ЯКОСТІ ХМАРНОЇ ІНФРАСТРУКТУРИ 

У статті представлено гібридну модель оцінювання якості хмарної інфраструктури, яка поєднує суб’єктивні експертні оцінки з об’єктивними 

результатами статистичного аналізу. Запропонована модель, яка отримала назву Hybrid Expert-derived with Entropy-based Weighted Sum Model 
(HEE-WSM), поєднує метод аналізу ієрархій (МАІ) для визначення ваг на основі оцінок експертів та ентропійний підхід для розрахунку ваг 

на основі реальних даних. Запропонована модель HEE-WSM є новим підходом, який враховує як судження експертів, так і дані моніторингу 

хмарного середовища. Для оцінювання якості хмарної інфраструктури пропонується використовувати вісім критеріїв (таких, як доступність, 

надійність, затримка, масштабованість, ефективність роботи, вартість, відповідність вимогам безпеки та оперативність підтримки), заснованих 

на міжнародних стандартах NIST SP 800-145 та ISO/IEC 25010. За типами дані критерії поділяються на «виграшні» та «витратні» критерії, що 

необхідно для забезпечення нормалізації та належного порівняння різних метрик якості. Гібридний механізм визначення вагових коефіцієнтів 
дозволяє збалансувати вагові коефіцієнти, визначені на основі МАІ та ентропійного підходу, за допомогою регульованого коефіцієнта, який 

забезпечує гнучкість залежно від потреб у прийнятті рішень. Таким чином, гнучкість запропонованої моделі забезпечується можливістю 

регулювати вплив суб’єктивних та об’єктивних ваг критеріїв. Остаточне оцінювання якості проводиться за допомогою моделі зваженої суми, 
яка агрегує нормалізовані показники метрик якості для кожної альтернативи. Для демонстрації працездатності запропонованого підходу, в 

роботі було проаналізовано десять провідних хмарних провайдерів, включаючи Amazon Web Services (AWS), Microsoft Azure, Google Cloud 
Platform (GCP), Alibaba Cloud та деякі інші. Отримані результати продемонстрували, що запропонована модель дозволяє ефективно оцінювати 

хмарні сервіси, причому GCP отримав найвищу інтегровану оцінку. Запропонований підхід можна вважати адаптивним, прозорим і корисним 

інструментом для впровадження в системи підтримки прийняття рішень для управління хмарною інфраструктурою. Запропонована модель 
може бути застосована в організаціях і підприємствах для обґрунтованого вибору постачальників хмарних послуг. Майбутні дослідження 

включають інтеграцію моніторингу даних у реальному часі та застосування методів машинного навчання для автоматичного коригування ваг 

критеріїв якості. 
Ключові слова: оцінювання якості хмарної інфраструктури, експертне оцінювання, оцінювання на основі ентропії, гібридна модель 

оцінювання, критерії якості, метрики якості хмарних послуг, прийняття рішень.

Introduction. Cloud computing plays a key role in 

modern information systems. It provides flexibility, 

scalability, and reduced IT infrastructure costs. However, 

assessing the quality of cloud infrastructure remains a 

challenging task. Cloud services are provided by various 

vendors. Each of them offers different levels of availability, 

performance, security, and support. Therefore, it is 

important to have a formalized quality assessment model. 

Such a model should take into account several criteria and 

their relative weights. 

One popular approach is the Weighted Sum Model 

(WSM). It allows different quality indicators to be 

combined into a single integrated index. This approach has 

been used in a number of studies in recent years. For 

example, Basu et al. proposed the use of a fuzzy weighted 

sum for selecting a cloud service provider based on Service 

Level Agreements (SLA) [1]. Xiao et al. applied a similar 

model to balance tasks between data centers and edge 

nodes. They combined latency and energy consumption as 

weighting criteria [2]. García-Ayllón et al. evaluated 

infrastructure based on geospatial data processed in a cloud 

environment [3]. 

Thus, the problem of assessing the quality of cloud 

infrastructure is relevant. It requires a systematic approach 

that takes into account the multi-criteria nature and 

diversity of technical indicators. 

 

Related work. Assessing the quality of cloud services 

requires the use of Multi-Criteria Decision-Making 

(MCDM) methods. Such methods allow for the 
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consideration of several parameters that influence the 

choice of a cloud service provider. 

The paper of Hosseinzadeh et al. [4] presents a 

comparative analysis of MCDM methods such as WSM, 

Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS) [5], and Analytic Hierarchy Process 

(AHP) [6]. The authors proposed the Weighted Aggregated 

Sum Product Assessment (WASPAS) method, which is 

well suited for dynamic cloud environments due to its 

flexible combination of weighted sums and products. 

Mostafa in [7] developed the Best-Only Method 

(BOM) within the framework of MCDM. This method 

allows to focus only on the most significant criteria, which 

reduces the influence of secondary indicators and increases 

the accuracy of the selection. 

The study of Nadeem [8] presents a hierarchical 

MCDM model that takes into account 15 qualitative 

factors. The proposed model forms a unified ranking 

system for Infrastructure as a Service (IaaS) providers 

based on service quality and usability indicators. 

Another approach is presented in the paper of 

Gireesha et al. [9], where intuitive fuzzy logic was 

combined with the WASPAS method to provide the 

Interval-Valued Intuitionistic Fuzzy Sets-Weighted 

Aggregate Sum and Product Assessment (IIVIFS-

WASPAS) method. This approach improves the quality of 

cloud provider ranking, especially in conditions of data 

uncertainty. 

Tomar et al. [10] proposed a hybrid model that 

combines objective weights (e.g., through entropy) with 

subjective expert assessments. This allows the system to be 

adapted to specific user requirements. 

In the work of Saha et al. [11], the Decision-Making 

Trial and Evaluation Laboratory (DEMATEL) method was 

used together with the entropy approach to calculate weight 

coefficients. The model allows determining the 

relationships between criteria and ranking cloud service 

providers based on a comprehensive assessment. 

All of the above studies demonstrate the importance 

of combining different decision-making methods for 

accurate and flexible assessment of cloud infrastructure 

quality. 

 

Research objective. This paper aims to contribute to 

the cloud infrastructure quality measurement field by using 

the introduced Hybrid Expert-derived with Entropy-based 

Weighted Sum Model (HEE-WSM), which can be applied 

to assess and improve the quality of cloud infrastructure. 

 

Materials and methods. Cloud infrastructure quality 

assessment is a complex task that requires consideration of 

numerous technical and non-technical indicators. Most 

existing models use either subjective expert methods (e.g., 

AHP) or objective mathematical approaches (e.g., entropy, 

TOPSIS). 

However, in a real environment, cloud services have 

both technical measurable characteristics (e.g., latency, 

availability) and values that depend on the specific user 

(e.g., security or cost priority). Therefore, it is important to 

create a model that combines both subjective and objective 

approaches. 

In addition, the technical characteristics of cloud 

infrastructure can change in real time. For example, 

latency, throughput, and availability vary depending on the 

load. Therefore, the quality assessment model must be 

adaptive to changes in data and usage context. Traditional 

static ranking models do not take this dynamic into account. 

The novel hybrid model should assume the current 

state of the cloud infrastructure as well as user preferences 

to be taken into account, enabling a more accurate and 

flexible assessment of the cloud services quality. 

Moreover, the novel quality assessment model must 

be transparent and easily implementable in real-world 

Decision Support Systems (DSS). The considered WSM is 

interpretable and computationally simple, being suitable 

for integration into IT infrastructure management systems. 

Thus, the deeper analytical capability could be achieved by 

combining the WSM with a flexible weighting mechanism 

based on AHP and entropy calculations. 

The cloud infrastructure quality assessment is based 

on internationally recognized standards, including NIST SP 

800-145 (National Institute of Standards and Technology) 

[12] and ISO/IEC 25010 – a model for software and system 

quality [13]. 

These standards define a set of key characteristics that 

are given in Table 1. In the cloud computing context, these 

attributes are expanded by technical metrics (i.e., latency, 

throughput, and SLA compliance). 

Table 1 – Cloud infrastructure quality criteria 

Criterion Acronym Measurement 

unit 

Description 

Availability C1 % uptime Percentage of 

time the 

service is 

operational 

Reliability C2 hours Mean Time 

Between 

Failure 

(MTBF) 

Latency C3 milliseconds Response time 

for service 

requests 

Scalability C4 instances / 

minute 

Ability to 

dynamically 

scale resources 

Performance 

Efficiency 

C5 requests / 

second 

Number of 

successful 

requests per 

second 

(throughput) 

Cost C6 USD/hour Pricing per 

resource unit 

(CPU, storage, 

etc.) 

Security 

Compliance 

C7 0-1 Compliance 

with standards 

(ISO 27001, 

HIPAA, etc.) 

Support 

Responsiveness 

C8 hours Time taken to 

resolve 

support tickets 
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The proposed cloud infrastructure quality assessment 

model uses a hybrid weighting mechanism that combines 

subjective and objective approaches. This approach allows 

the accurate reflection of both user priorities and actual 

technical indicators of the cloud environment. 

The model uses AHP for subjective weighting, where 

experts perform pairwise comparisons between criteria C1-

C8, as it is demonstrated in Fig. 1. This allows the relative 

importance of each criterion to be identified in a specific 

context (e.g., critical applications, government services, 

business analytics, etc.). 

 

Fig. 1. Pairwise comparisons process between criteria C1-C8 

The AHP proposed by Saaty [14] is well known and 

widely used in MCDM problems to determine priorities 

among alternatives based on pairwise comparisons. 

At the same time, objective weights are calculated 

based on the entropy method, which analyzes the degree of 

variability (uncertainty) of criteria C1-C8 values in real 

measurements. The greater the dispersion in the values of a 

particular criterion, the higher its informational value and, 

accordingly, its weight. This objective approach is based on 

relevant cloud environment monitoring data (e.g., latency, 

uptime, number of failures). 

The entropy method [15] is based on the assumption 

that the informational value of a criterion depends on the 

diversity (variability) of its values among alternatives. If 

the value of the criterion is the same for all objects, it has 

no discriminatory power and therefore has a low weight. If 

there is strong variability, the criterion has high 

informativeness and, accordingly, greater weight in the 

overall assessment. 

Let us assume: 

- 𝑚 is the number of alternatives (e.g., cloud 

providers); 

- 𝑛 is the number of criteria; 

- 𝑥𝑖𝑗  is the value of criterion 𝑗 for alternative 𝑖. 

The values of criteria should be normalized: 

- for benefit-type criteria: 

 𝑝𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

; (1) 

- for cost-type criteria: 

 𝑝𝑖𝑗 =
1 𝑥𝑖𝑗⁄

∑ (1 𝑥𝑖𝑗⁄ )𝑚
𝑖=1

. (2) 

During the cloud infrastructure quality assessment, a 

set of different criteria is applied, which are conditionally 

divided into two types: benefits and costs (Fig. 2). 

Benefit criteria, such as availability (C1), reliability 

(C2), scalability (C4), throughput (C5), and security 

compliance (C7), reflect positive characteristics that should 

be as high as possible. The higher their values, the better 

the quality of service. 

On the other hand, cost criteria, such as latency (C3), 

cost (C6), and support responsiveness (C8), are undesirable 

parameters, where lower values are better. 

 

Fig. 2. Used criteria taxonomy 

This differentiation of considered criteria is important 

for the correct data normalization, since multi-criteria 

analysis methods have different formulas for each type of 

criterion. 
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For each criterion the entropy is calculated: 

 𝑒𝑗 = −𝑘 ∑ 𝑝𝑖𝑗 ∙ ln(𝑝𝑖𝑗)𝑚
𝑖=1 , 𝑘 =

1

ln(𝑚)
. (3) 

If 𝑝𝑖𝑗 = 0, let us assume 𝑝𝑖𝑗 ∙ ln(𝑝𝑖𝑗) = 0. 

The degree of divergence (informativeness) is defined 

for each criterion: 

 𝑑𝑗 = 1 − 𝑒𝑗 . (4) 

The lower the entropy 𝑒𝑗, the higher the dispersion of 

values 𝑥𝑖𝑗 , and therefore, the greater the significance of the 

criterion. 

Therefore, weights are an objective assessment of the 

importance of each criterion based on actual changes in 

cloud environment monitoring data: 

 𝑤𝑗
𝑒𝑛𝑡𝑟𝑜𝑝𝑦

=
𝑑𝑗

∑ 𝑑𝑗
𝑛
𝑗=1

. (5) 

The final weight of each criterion is calculated as a 

combination of two components – AHP weight and entropy 

weight – taking into account the adjustable coefficient 𝛼, 

which allows balancing the influence of subjective and 

objective parts: 

 𝑤𝑗 = 𝛼 ∙ 𝑤𝑗
𝐴𝐻𝑃 + (1 − 𝛼) ∙ 𝑤𝑗

𝑒𝑛𝑡𝑟𝑜𝑝𝑦
. (6) 

The value 𝛼 = 1 corresponds to a completely expert-

based approach, while 𝛼 = 0 corresponds only to data from 

monitoring systems, 0 ≤ 𝛼 ≤ 1. This ensures the model’s 

adaptability to different usage scenarios. 

This hybrid approach not only improves assessment 

accuracy, but also allows users to interactively change the 

assessment structure according to requirements or context 

(e.g., choosing a provider for critical services or for backup 

data storage). 

Finally, the quality metrics are normalized based on: 

- for benefit-type criteria: 

 𝑞𝑖𝑗 =
𝑥𝑖𝑗− min

𝑖=1,𝑚
𝑥𝑖𝑗

max
𝑖=1,𝑚

𝑥𝑖𝑗− min
𝑖=1,𝑚

𝑥𝑖𝑗
; (7) 

- for cost-type criteria: 

 𝑞𝑖𝑗 =
max

𝑖=1,𝑚
𝑥𝑖𝑗−𝑥𝑖𝑗

max
𝑖=1,𝑚

𝑥𝑖𝑗− min
𝑖=1,𝑚

𝑥𝑖𝑗
. (8) 

The aggregated estimates of alternatives are defined 

using WSM: 

 𝑄𝑖 = ∑ 𝑤𝑗 ∙ 𝑞𝑖𝑗
𝑛
𝑗=1 . (9) 

The alternatives (e.g., cloud providers, services, etc.) 

then ranked based on the total score 𝑄𝑖 , 𝑖 = 1, 𝑚. 

Moreover, the obtained weighted quality metrics of 

each alternative can be visualized using radar charts for 

multidimensional analysis. 

The proposed approach to assessing the quality of 

cloud infrastructure combines expert assessments and 

monitoring data to create a balanced and flexible decision-

making model (Fig. 3). The first stage involves selecting 

alternatives (e.g., cloud providers) and collecting values for 

eight key quality criteria (C1-C8) based on NIST and 

ISO/IEC 25010 standards. Next, the criteria are weighted 

in parallel using two methods: expert and statistical. In the 

first scenario, the AHP method is used, where experts 

conduct pairwise comparisons of criteria and form a 

hierarchy of weights. In the second scenario, weights are 

calculated based on the entropy method, which takes into 

account the variability of data for each criterion. 

 

Fig. 3. Proposed approach 

Both types of weights are combined using an 

adjustable balance coefficient 𝛼, which allows the model to 

be adapted to a specific context: the user can prioritize 

expert opinion or actual measurements. After calculating 

the combined weights, all criteria are normalized to align 

them on a scale. Then, the WSM is applied to calculate the 

total integral score for each alternative. At the final stage, 

the results are visualized, which makes it easy to compare 

alternatives and choose the best option. 

Results and discussion. Using the proposed model, ten 

leading cloud service providers representing the main 

segments of the global market were analyzed. 

These include Amazon Web Services (AWS) [16], 

Microsoft Azure [17], Google Cloud Platform (GCP) [18], 

IBM Cloud [19], Oracle Cloud Infrastructure [20], 

DigitalOcean [21], Alibaba Cloud [22], Linode [23], Vultr 

[24], and Hetzner Online [25]. 

These cloud providers were selected based on their 

widespread use, diversity of architectural solutions, and 

availability of open information on key quality indicators. 

Thus, the analysis covers both global (e.g., AWS, Azure, 

GCP) and mid-range providers with regional or specialized 

coverage (e.g., Linode, Hetzner, DigitalOcean), providing 

a complete picture of the cloud services market. 

Tables 2 and 3 illustrate the different types of criteria 

used to assess the quality of cloud infrastructure. Table 2 

contains benefit-type criteria, the values of which should be 
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as high as possible to achieve a better rating (C1, C2, C4, 

C5, and C7). 

Table 2 – Benefit criteria values of cloud providers 

Provider C1 C2 C4 C5 C7 

AWS 99.99 6000 25 3000 0.95 

Microsoft Azure 99.95 5800 22 2800 0.93 

Google Cloud 99.99 6200 28 3200 0.94 

IBM Cloud 99.9 5500 15 2200 0.9 

Oracle Cloud 99.92 5700 20 2500 0.88 

DigitalOcean 99.85 5000 12 1800 0.75 

Alibaba Cloud 99.94 5900 23 2900 0.9 

Linode 99.8 4800 10 1700 0.7 

Vultr 99.83 4900 11 1750 0.68 

Hetzner 99.88 5200 14 1900 0.72 

 

Table 3 denotes cost-type criteria (C3, C6, and C8), 

where lower values indicate higher service quality. 

Table 3 – Cost criteria values of cloud providers 

Provider C3 C6 C8 

AWS 95 0.6 1 

Microsoft Azure 100 0.58 1.5 

Google Cloud 90 0.62 1 

IBM Cloud 110 0.65 2 

Oracle Cloud 105 0.55 2.5 

DigitalOcean 120 0.4 3 

Alibaba Cloud 102 0.53 1.8 

Linode 130 0.38 4 

Vultr 125 0.35 4.2 

Hetzner 115 0.3 3.5 

 

These numbers (Table 2 and 3) are based on typical 

ranges reported in industry benchmarks and public SLAs 

for the given providers [16–25]. 

The sample pairwise comparisons between criteria 

C1-C8 (Table 4) shows the relative importance ratings of 

each pair of criteria according to the AHP [4], where the 

values reflect the one criterion’s preference over another. 

Table 4 – Pairwise comparisons between criteria C1-C8 

Criteria C1 C2 C3 C4 C5 C6 C7 C8 

C1 1 1 3 3 5 4 2 6 

C2 1 1 3 3 5 4 2 6 

C3 1/3 1/3 1 2 3 2 1 3 

C4 1/3 1/3 1/2 1 2 2 1 2 

C5 1/5 1/5 1/3 1/2 1 2 1 2 

C6 1/4 1/4 1/2 1/2 1/2 1 1 2 

C7 1/2 1/2 1 1 1 1 1 2 

C8 1/6 1/6 1/3 1/2 1/2 1/2 1/2 1 

 

Hence, the maximum eigenvalue is 𝜆𝑚𝑎𝑥 = 8.33 and 

the consistency index is: 

 𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑚

𝑚−1
=

8.33−8

8−1
= 0.05. (10) 

Having the random index for 𝑚 = 8 is equal to 𝑅𝐼 =
1.41, the consistency rate is: 

 𝐶𝑅 =
𝐶𝐼

𝑅𝐼
=

0.05

1.41
= 0.03 < 0.1. (11) 

Since obtained 𝐶𝑅 value is less than 10%, the given 

in Table 4 pairwise comparisons between criteria C1-C8 

can be considered to be consistent. 

Table 5 shows the weights of criteria C1–C8 obtained 

using the AHP method (expert assessment) and the entropy 

approach (objective assessment based on data), as well as 

balanced weights calculated using the coefficient 𝛼 = 0.5, 

which ensures an equal contribution of both approaches. 

Table 5 – Weights of criteria C1-C8 

Criteria AHP-based Entropy-based Balanced 

C1 0.26 0.15 0.20 

C2 0.26 0.14 0.20 

C3 0.12 0.14 0.13 

C4 0.09 0.11 0.10 

C5 0.07 0.13 0.10 

C6 0.06 0.12 0.09 

C7 0.09 0.14 0.12 

C8 0.04 0.06 0.05 

 

Fig. 4 shows how balanced weights of criteria C1-C8 

change when the coefficient 𝛼 is changed from 0 to 1. 

 

Fig. 4. Balanced weights of criteria with different 𝛼 

Table 6 demonstrates normalized benefit-type criteria 

values obtained using (7) based on the original values from 

SLAs and benchmarks given in Table 3. 

Table 6 – Normalized benefit-type criteria values 

Provider C1 C2 C4 C5 C7 

AWS 1.00  0.86  0.83  0.87  1.00  

Microsoft Azure 0.79  0.71  0.67  0.73  0.93  

Google Cloud 1.00  1.00  1.00  1.00  0.96  

IBM Cloud 0.53  0.50  0.28  0.33  0.81  

Oracle Cloud 0.63  0.64  0.56  0.53  0.74  

DigitalOcean 0.26  0.14  0.11  0.07  0.26  

Alibaba Cloud 0.74  0.79  0.72  0.80  0.81  

Linode 0.00  0.00  0.00  0.00  0.07  

Vultr 0.16  0.07  0.06  0.03  0.00  

Hetzner 0.42  0.29  0.22  0.13  0.15  

 

Table 7 outlines normalized cost-type criteria values 

obtained using (8) based on the original values from SLAs 

and benchmarks given in Table 4. 
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Table 7 – Normalized cost-type criteria values 

Provider C3 C6 C8 

AWS 0.88  0.14  1.00  

Microsoft Azure 0.75  0.20  0.84  

Google Cloud 1.00  0.09  1.00  

IBM Cloud 0.50  0.00  0.69  

Oracle Cloud 0.63  0.29  0.53  

DigitalOcean 0.25  0.71  0.38  

Alibaba Cloud 0.70  0.34  0.75  

Linode 0.00  0.77  0.06  

Vultr 0.13  0.86  0.00  

Hetzner 0.38  1.00  0.22  

 

For example, the aggregated estimate for 𝑖 = 1 (i.e. 

AWS provider) is calculated using WSM (9) as follows: 

 

𝑄1 = ∑ 𝑤𝑗 ∙ 𝑞1𝑗
𝑛
𝑗=1 =

= 0.20 ∙ 1.00 + 0.20 ∙ 0.86 + 0.13 ∙ 0.88 +
+0.10 ∙ 0.83 + 0.10 ∙ 0.87 + 0.09 ∙ 0.14 +

+0.12 ∙ 1.00 + 0.05 ∙ 1.00 = 0.84.

 (12) 

Another aggregated estimate, i.e. for 𝑖 = 2 (i.e. Azure 

provider) is calculated using WSM (9) as follows: 

 

𝑄2 = ∑ 𝑤𝑗 ∙ 𝑞2𝑗
𝑛
𝑗=1 =

= 0.20 ∙ 0.79 + 0.20 ∙ 0.71 + 0.13 ∙ 0.75 +
+0.10 ∙ 0.67 + 0.10 ∙ 0.73 + 0.09 ∙ 0.20 +

+0.12 ∙ 0.93 + 0.05 ∙ 0.84 = 0.72.

 (13) 

Table 8 demonstrates weighted normalized values of 

benefit-type criteria (Table 6). 

Table 8 – Weighted normalized benefit-type criteria values 

Provider C1 C2 C4 C5 C7 

AWS 0.20  0.17  0.08  0.09  0.12  

Microsoft Azure 0.16  0.14  0.07  0.07  0.11  

Google Cloud 0.20  0.20  0.10  0.10  0.11  

IBM Cloud 0.11  0.10  0.03  0.03  0.10  

Oracle Cloud 0.13  0.13  0.06  0.05  0.09  

DigitalOcean 0.05  0.03  0.01  0.01  0.03  

Alibaba Cloud 0.15  0.16  0.07  0.08  0.10  

Linode 0.00  0.00  0.00  0.00  0.01  

Vultr 0.03  0.01  0.01  0.00  0.00  

Hetzner 0.09  0.06  0.02  0.01  0.02  

 

Table 9 demonstrates weighted normalized values of 

cost-type criteria (Table 7). 

Table 9 – Weighted normalized cost-type criteria values 

Provider C3 C6 C8 

AWS 0.12  0.01  0.05  

Microsoft Azure 0.10  0.02  0.04  

Google Cloud 0.13  0.01  0.05  

IBM Cloud 0.07  0.00  0.04  

Oracle Cloud 0.08  0.03  0.03  

DigitalOcean 0.03  0.07  0.02  

Alibaba Cloud 0.09  0.03  0.04  

Linode 0.00  0.07  0.00  

Vultr 0.02  0.08  0.00  

Hetzner 0.05  0.09  0.01  

 

Fig. 5 shows the examples of the obtained total scores 

for each of the ten cloud providers, calculated using the 

WSM with balanced criteria weights, where the balance 

coefficient is 𝛼 = 0.5. 

 

Fig. 5. Total quality assessment scores for 𝛼 = 0.5 

The outlined example calculation takes into account 

expert assessments and objective weights obtained using 

the entropy analysis. 

As can be seen from Fig. 5, GCP received the highest 

score (0.91), indicating its superiority in most key quality 

criteria. Next are AWS (0.84), Microsoft Azure (0.72), and 

Alibaba Cloud (0.72) which also have high scores. 

In contrast, DigitalOcean (0.25), Linode (0.08), and 

Vultr (0.15) received the lowest scores, indicating limited 

compliance with the considered criteria. 

Fig. 6 demonstrates domination of GCP and AWS on 

the radar chart. 

 

Fig. 6 – Domination of GCP and AWS for 𝛼 = 0.5 

Such a visual comparison of assessed cloud providers 

can be further developed to create interactive analytical 

dashboards to support intelligent decision-making. This 

can be achieved by introducing “what if” analysis and AI-

driven conversational suggestions and insights. 

Conclusion and future work. This study proposed a 

Hybrid Expert-derived with Entropy-based Weighted Sum 

Model (HEE-WSM) for the cloud infrastructure quality 

assessment, which combines the WSM with a dual criterion 
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weighting approach. This approach takes into account both 

subjective expert assessments (AHP-based) and objective 

statistical data (entropy-based), which allows achieving a 

balance between user judgment and technical indicators. 

The model uses eight quality criteria C1-C8 based on NIST 

and ISO/IEC 25010 standards, covering key parameters of 

cloud services, including availability, latency, scalability, 

cost, security, and others. The results of 10 leading cloud 

providers analysis show the robustness of the proposed 

approach for decision-making in the cloud environment. 

In the future, the model should be extended by adding 

real-time monitoring and using machine learning methods 

to adjust weights based on load type and context 
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