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A. KOPP, R. DASHKIVSKYI

TOWARDS HYBRID CLOUD INFRASTRUCTURE QUALITY ASSESSMENT MODEL

The paper presents a hybrid model for the cloud infrastructure quality assessment, which combines subjective expert assessments with objective results
of statistical analysis. The proposed model, called Hybrid Expert-derived with Entropy-based Weighted Sum Model (HEE-WSM), combines the Analytic
Hierarchy Process (AHP) to determine weights based on expert assessments and the entropy-based approach to calculate weights using real data. The
proposed HEE-WSM model is a novel approach that takes into account both expert judgments and cloud environment monitoring data. Eight criteria
(such as availability, reliability, latency, scalability, performance efficiency, cost, security compliance, and support responsiveness) based on the
international standards NIST SP 800-145 and ISO/IEC 25010 are proposed for the cloud infrastructure quality assessment. These criteria are divided
into “benefit” and “cost” criteria, which is necessary to ensure normalization and proper comparison of different quality metrics. A hybrid mechanism
for determining weighting coefficients allows balancing the weighting coefficients determined on the basis of AHP and the entropy approach using an
adjustable coefficient that provides flexibility depending on decision-making needs. Thus, the flexibility of the proposed model is ensured by the ability
to adjust the influence of subjective and objective weights of criteria. The final quality assessment is performed using the Weighted Sum Model that
aggregates normalized quality metric scores for each alternative. To demonstrate the robustness of the proposed approach, ten leading cloud providers
were analyzed in this study, including Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP), Alibaba Cloud, and several
others. The obtained results demonstrated that the proposed model allows for effective evaluation of cloud services, with GCP receiving the highest total
quality score. The proposed approach can be considered an adaptive, transparent, and useful tool for implementation in decision support systems for
cloud infrastructure management. The proposed model can be applied in organizations and enterprises for the informed selection of cloud service
providers. Future research includes the integration of real-time data monitoring and the application of machine learning methods for automatic adjustment
of quality criteria weights.

Keywords: cloud infrastructure quality assessment, expert judgment, entropy-based assessment, hybrid assessment model, quality criteria, cloud
service quality metrics, decision making.

A. M. KOIII, P. b. TAIKIBCbKHH

PO I'IBPUIHY MO/JIEJIb OIITHIOBAHHS SIKOCTI XMAPHOI IHOPACTPYKTYPH

V cTaTTi NpeacTaBiIeHo riOpUIHy MOJEIb OLIHIOBAHHS SIKOCTI XMapHOi iHPPACTPyKTYpH, sIKa MOEJHYE Cy0 €KTHBHI €KCIEPTHI OLIHKA 3 00’ €KTHBHUMH
pe3yJbTaTaMu CTaTUCTHYHOTO aHaii3y. 3anpornoHOBaHa MOJIEb, sika otpumaina Ha3By Hybrid Expert-derived with Entropy-based Weighted Sum Model
(HEE-WSM), noeanye meron ananizy iepapxiii (MAI) ayist BU3HAUEHHS! Bar HA OCHOBI OLIHOK €KCIIEPTIB Ta EHTPOMIMHMI MiAXi/ s PO3PAXyHKY Bar
Ha OCHOBI peaibHUX JaHuX. 3anponoHoBana Monens HEE-WSM e HOBHM mifxoJoM, KU BPaxoBYe€ SIK CYKCHHsI €KCIIEPTIB, TaK i JaHi MOHITOPHHTY
XMapHOTO cepenoBuia. /st OLiHIOBAaHHS SKOCTI XMapHOI iHPPACTPYKTYPHU MPOMOHY€ETHCSI BAKOPUCTOBYBATH BiCiM KPUTEPIiB (TaKHX, SIK IOCTYIHICTD,
Ha1ifHICTb, 3aTPUMKA, MACIITA00BaHICTh, €(HEKTUBHICTH POOOTH, BapTICTh, BiINOBIIHICTH BUMOTaM O€3MEKH Ta OIIePAaTHBHICTh i ITPUMKH ), 3aCHOBAaHHUX
Ha MiskHapogHux ctargaptax NIST SP 800-145 ta ISO/IEC 25010. 3a Tunamu f1aHi KpuTepii MOMINAIOTECS Ha «BUTPAIITHI» Ta KBUTPATHI» KPUTEPIi, 110
HEeoOXiTHO 115t 3a0e3MeYeHHsT HopMaltizallii Ta HaJIE)KHOTO TOPIBHAHHS PiI3HUX METPUK KOCTI. ['10puaHMiA MexaHi3M BU3HAYECHHs BArOBUX KOE(Illi€HTIB
JI03BOJISIE 30aMaHCyBaTH BaroBi koedilieHTH, Biu3HaYeH] Ha 0cHOBI MAI Ta eHTpOmiifHOTO mi X0y, 32 JOMOMOTOI0 PEryIbOBAHOTO Koedilli€HTa, KUt
3a0e3redye THy4KICTh 3aJIeXKHO BiJ MOTpeO y NMpUHHATTI pimreHb. TakuM YHHOM, THYYKICTH 3aIIpONOHOBAaHOI MOJENi 3a0e3Iedy€eThCsS MOKIIMBICTIO
peryJroBaTH BIUIMB Cy0’€KTHBHHUX Ta 00’ €KTMBHHX Bar KpuTepiiB. OCTaTOYHE OI[IHIOBAaHHS SKOCTI MPOBOIUTHCS 32 IOTIOMOTOF0 MO/IEINI 3BaXKEHOI CyMH,
sIKa arperye HOpMaJli3oBaHi MOKa3HUKU METPUK SIKOCTI JUIsi KOXKHOT aJibTepHAaTUBH. Iy JeMOHCTpallii npane3gaTHOCT] 3alpoNoOHOBaHOTO MiIXOLY, B
poboTi OyI0 IpoaHaTi30BaHO JECSTh MPOBIJHIX XMapHUX MpoBaiiaepis, Bkimoyatoun Amazon Web Services (AWS), Microsoft Azure, Google Cloud
Platform (GCP), Alibaba Cloud Ta nestki inmi. OtpuMaHi pe3ysbTaTi MPOJEMOHCTPYBAIIH, L0 3aMPONOHOBAaHA MOZEIIb 103BOJISIE €PEKTUBHO OLIHIOBATH
xMapHi cepBicu, npuyomy GCP oTpumaB HaiiBuIIly iHTErpOBaHY OLIHKY. 3alPOTIOHOBAHHH ITiX1/] MOXKHA BB)KATH aIalITUBHUM, TIPO30PUM i KOPUCHUM
iHCTPYMEHTOM I BIIPOBAKEHHS B CUCTEMH ITiATPUMKH HPHITHATTS PillleHb JUIS yNIpaBIiHHS XMapHOI iHPPaCTPyKTYporo. 3arpornoHOBaHa MOJIEIb
Moske OyTH 3aCTOCOBaHAa B OpTaHi3allifX i MiANPUEMCTBAX JUIs OOIPYHTOBAHOTO BHOODY MOCTAaYalbHUKIB XMapHHUX MOCTyr. MaiOyTHI TOCIiKEHHS
BKJIIOYAIOTh {HTErPaIil0 MOHITOPHHTY JAHHUX Y PEalbHOMY 4aci Ta 3aCTOCYBaHHS METO/IiB MAIIMHHOTO HABYAHHSI JUIsl aBTOMaTHYHOTO KOPUTI'YBaHHS Bar
KPUTEPIiB AKOCTI.

Kuro4oBi c10Ba: ONiHIOBaHHS SIKOCTI XMapHOi iHQPAaCTPYKTypH, eKCIIEpTHE OIiHIOBaHHS, OIIHIOBAHHS Ha OCHOBI €HTpOIIii, ribpnIHa MoJeNh
OIIIHIOBAHHS, KPUTEPIi IKOCTi, METPHKHU SIKOCTI XMapHUX TOCIYT, PUIHATTS PillleHb.

Introduction. Cloud computing plays a key role in
modern information systems. It provides flexibility,
scalability, and reduced IT infrastructure costs. However,
assessing the quality of cloud infrastructure remains a
challenging task. Cloud services are provided by various
vendors. Each of them offers different levels of availability,
performance, security, and support. Therefore, it is
important to have a formalized quality assessment model.
Such a model should take into account several criteria and
their relative weights.

One popular approach is the Weighted Sum Model
(WSM). It allows different quality indicators to be
combined into a single integrated index. This approach has
been used in a number of studies in recent years. For
example, Basu et al. proposed the use of a fuzzy weighted

sum for selecting a cloud service provider based on Service
Level Agreements (SLA) [1]. Xiao et al. applied a similar
model to balance tasks between data centers and edge
nodes. They combined latency and energy consumption as
weighting criteria [2]. Garcia-Ayllon et al. evaluated
infrastructure based on geospatial data processed in a cloud
environment [3].

Thus, the problem of assessing the quality of cloud
infrastructure is relevant. It requires a systematic approach
that takes into account the multi-criteria nature and
diversity of technical indicators.

Related work. Assessing the quality of cloud services

requires the use of Multi-Criteria Decision-Making
(MCDM) methods. Such methods allow for the
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consideration of several parameters that influence the
choice of a cloud service provider.

The paper of Hosseinzadeh et al. [4] presents a
comparative analysis of MCDM methods such as WSM,
Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS) [5], and Analytic Hierarchy Process
(AHP) [6]. The authors proposed the Weighted Aggregated
Sum Product Assessment (WASPAS) method, which is
well suited for dynamic cloud environments due to its
flexible combination of weighted sums and products.

Mostafa in [7] developed the Best-Only Method
(BOM) within the framework of MCDM. This method
allows to focus only on the most significant criteria, which
reduces the influence of secondary indicators and increases
the accuracy of the selection.

The study of Nadeem [8] presents a hierarchical
MCDM model that takes into account 15 qualitative
factors. The proposed model forms a unified ranking
system for Infrastructure as a Service (laaS) providers
based on service quality and usability indicators.

Another approach is presented in the paper of
Gireesha et al. [9], where intuitive fuzzy logic was
combined with the WASPAS method to provide the
Interval-Valued Intuitionistic  Fuzzy  Sets-Weighted
Aggregate  Sum and Product Assessment (IIVIFS-
WASPAS) method. This approach improves the quality of
cloud provider ranking, especially in conditions of data
uncertainty.

Tomar et al. [10] proposed a hybrid model that
combines objective weights (e.g., through entropy) with
subjective expert assessments. This allows the system to be
adapted to specific user requirements.

In the work of Saha et al. [11], the Decision-Making
Trial and Evaluation Laboratory (DEMATEL) method was
used together with the entropy approach to calculate weight
coefficients. The model allows determining the
relationships between criteria and ranking cloud service
providers based on a comprehensive assessment.

All of the above studies demonstrate the importance
of combining different decision-making methods for
accurate and flexible assessment of cloud infrastructure
quality.

Research objective. This paper aims to contribute to
the cloud infrastructure quality measurement field by using
the introduced Hybrid Expert-derived with Entropy-based
Weighted Sum Model (HEE-WSM), which can be applied
to assess and improve the quality of cloud infrastructure.

Materials and methods. Cloud infrastructure quality
assessment is a complex task that requires consideration of
numerous technical and non-technical indicators. Most
existing models use either subjective expert methods (e.g.,
AHP) or objective mathematical approaches (e.g., entropy,
TOPSIS).

However, in a real environment, cloud services have
both technical measurable characteristics (e.g., latency,
availability) and values that depend on the specific user
(e.g., security or cost priority). Therefore, it is important to
create a model that combines both subjective and objective
approaches.

In addition, the technical characteristics of cloud
infrastructure can change in real time. For example,
latency, throughput, and availability vary depending on the
load. Therefore, the quality assessment model must be
adaptive to changes in data and usage context. Traditional
static ranking models do not take this dynamic into account.

The novel hybrid model should assume the current
state of the cloud infrastructure as well as user preferences
to be taken into account, enabling a more accurate and
flexible assessment of the cloud services quality.

Moreover, the novel quality assessment model must
be transparent and easily implementable in real-world
Decision Support Systems (DSS). The considered WSM is
interpretable and computationally simple, being suitable
for integration into IT infrastructure management systems.
Thus, the deeper analytical capability could be achieved by
combining the WSM with a flexible weighting mechanism
based on AHP and entropy calculations.

The cloud infrastructure quality assessment is based
on internationally recognized standards, including NIST SP
800-145 (National Institute of Standards and Technology)
[12] and ISO/IEC 25010 — a model for software and system
quality [13].

These standards define a set of key characteristics that
are given in Table 1. In the cloud computing context, these
attributes are expanded by technical metrics (i.e., latency,
throughput, and SLA compliance).

Table 1 — Cloud infrastructure quality criteria

Measurement
unit
% uptime

Criterion Acronym Description

Auvailability C1 Percentage of
time the
service is
operational
Mean  Time
Between
Failure
(MTBF)

Reliability C2 hours

Latency

C3

milliseconds

Response time
for service
requests

Scalability

C4

instances  /
minute

Ability to
dynamically
scale resources

Performance
Efficiency

C5

requests [/
second

Number of
successful
requests  per
second
(throughput)

Cost

C6

USD/hour

Pricing  per
resource unit
(CPU, storage,
etc.)

Security
Compliance

C7

Compliance
with standards
(IS0 27001,
HIPAA, etc.)

Support
Responsiveness

C8

hours

Time taken to
resolve
support tickets
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The proposed cloud infrastructure quality assessment
model uses a hybrid weighting mechanism that combines
subjective and objective approaches. This approach allows
the accurate reflection of both user priorities and actual
technical indicators of the cloud environment.

The model uses AHP for subjective weighting, where
experts perform pairwise comparisons between criteria C1-
C8, as it is demonstrated in Fig. 1. This allows the relative
importance of each criterion to be identified in a specific
context (e.g., critical applications, government services,
business analytics, etc.).

a1

v ¥

i T«

< B

Fig. 1. Pairwise comparisons process between criteria C1-C8

The AHP proposed by Saaty [14] is well known and
widely used in MCDM problems to determine priorities
among alternatives based on pairwise comparisons.

At the same time, objective weights are calculated
based on the entropy method, which analyzes the degree of
variability (uncertainty) of criteria C1-C8 values in real
measurements. The greater the dispersion in the values of a
particular criterion, the higher its informational value and,
accordingly, its weight. This objective approach is based on
relevant cloud environment monitoring data (e.g., latency,
uptime, number of failures).

The entropy method [15] is based on the assumption
that the informational value of a criterion depends on the
diversity (variability) of its values among alternatives. If
the value of the criterion is the same for all objects, it has
no discriminatory power and therefore has a low weight. If
there is strong variability, the criterion has high
informativeness and, accordingly, greater weight in the
overall assessment.

Let us assume:

- m is the number of alternatives (e.g., cloud
providers);

- nis the number of criteria;

- x;; is the value of criterion j for alternative i.

The values of criteria should be normalized:

- for benefit-type criteria:

Xij
Pij=E —; 1)

=1 %)
- for cost-type criteria:

_ 1/Xij
Py = S (/e @)

During the cloud infrastructure quality assessment, a
set of different criteria is applied, which are conditionally
divided into two types: benefits and costs (Fig. 2).

Benefit criteria, such as availability (C1), reliability
(C2), scalability (C4), throughput (C5), and security
compliance (C7), reflect positive characteristics that should
be as high as possible. The higher their values, the better
the quality of service.

On the other hand, cost criteria, such as latency (C3),
cost (C6), and support responsiveness (C8), are undesirable
parameters, where lower values are better.

Cost Criteria

P L C3
i
///
> Cost —» (6
/ .
.l... \.\\
AN
S (8
."l-l..
: Benefit Criteria
Criteria
1
Iy
/S
\ o

“»  Benefit —» C4

~— (5

Fig. 2. Used criteria taxonomy

This differentiation of considered criteria is important
for the correct data normalization, since multi-criteria
analysis methods have different formulas for each type of
criterion.
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For each criterion the entropy is calculated:

e = —k X py - In(pyy) k= —

In(m)"

®3)

If p;; = 0, let us assume p;; - In(p;;) = 0.
The degree of divergence (informativeness) is defined
for each criterion:

The lower the entropy e;, the higher the dispersion of
values x;;, and therefore, the greater the significance of the
criterion.

Therefore, weights are an objective assessment of the
importance of each criterion based on actual changes in
cloud environment monitoring data:

entropy dj
w; = )
J Zj:1 dj

The final weight of each criterion is calculated as a
combination of two components — AHP weight and entropy
weight — taking into account the adjustable coefficient «,
which allows balancing the influence of subjective and
objective parts:

wi =a wi +(1-a) -Wjentmpy. (6)

The value @ = 1 corresponds to a completely expert-
based approach, while @ = 0 corresponds only to data from
monitoring systems, 0 < a < 1. This ensures the model’s
adaptability to different usage scenarios.

This hybrid approach not only improves assessment
accuracy, but also allows users to interactively change the
assessment structure according to requirements or context
(e.g., choosing a provider for critical services or for backup
data storage).

Finally, the quality metrics are normalized based on:

- for benefit-type criteria:
xi]-—_mi_nxij

i=1m . (7)

max x;j— min x;;’
i=1,m i=1,m

qij =

- for cost-type criteria:

i=1,m (8)
max x;j— min x;;’
i=1,m i=1,m

qij =

The aggregated estimates of alternatives are defined
using WSM:

Qi = X7 w; " qij- 9)

The alternatives (e.g., cloud providers, services, etc.)

then ranked based on the total score Q;, i = 1, m.

Moreover, the obtained weighted quality metrics of
each alternative can be visualized using radar charts for
multidimensional analysis.

The proposed approach to assessing the quality of
cloud infrastructure combines expert assessments and
monitoring data to create a balanced and flexible decision-
making model (Fig. 3). The first stage involves selecting
alternatives (e.g., cloud providers) and collecting values for
eight key quality criteria (C1-C8) based on NIST and
ISO/IEC 25010 standards. Next, the criteria are weighted

in parallel using two methods: expert and statistical. In the
first scenario, the AHP method is used, where experts
conduct pairwise comparisons of criteria and form a
hierarchy of weights. In the second scenario, weights are
calculated based on the entropy method, which takes into
account the variability of data for each criterion.

Select alternatives and
prepare C1-C8 quality
metrics

- ~

Ve g ™~
v

v
Entropy-based
Expert-derivec S

Define entropy and

Fill judgement matri .
informativeness

Calculate AHP-based
Calculate entropy-

ight
weights based weights
I“

\‘ B /s
™ s a
Adjust balancing
coefficient a
v
WSM-based aggregation
Normalize quality
metrics
" ~

~ \\
! L 2

Visualize alternative

Calculate total scores . .
weighted metrics

Fig. 3. Proposed approach

Both types of weights are combined using an
adjustable balance coefficient a, which allows the model to
be adapted to a specific context: the user can prioritize
expert opinion or actual measurements. After calculating
the combined weights, all criteria are normalized to align
them on a scale. Then, the WSM is applied to calculate the
total integral score for each alternative. At the final stage,
the results are visualized, which makes it easy to compare
alternatives and choose the best option.

Results and discussion. Using the proposed model, ten
leading cloud service providers representing the main
segments of the global market were analyzed.

These include Amazon Web Services (AWS) [16],
Microsoft Azure [17], Google Cloud Platform (GCP) [18],
IBM Cloud [19], Oracle Cloud Infrastructure [20],
DigitalOcean [21], Alibaba Cloud [22], Linode [23], Vultr
[24], and Hetzner Online [25].

These cloud providers were selected based on their
widespread use, diversity of architectural solutions, and
availability of open information on key quality indicators.
Thus, the analysis covers both global (e.g., AWS, Azure,
GCP) and mid-range providers with regional or specialized
coverage (e.g., Linode, Hetzner, DigitalOcean), providing
a complete picture of the cloud services market.

Tables 2 and 3 illustrate the different types of criteria
used to assess the quality of cloud infrastructure. Table 2
contains benefit-type criteria, the values of which should be
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as high as possible to achieve a better rating (C1, C2, C4,
C5, and C7).

Table 2 — Benefit criteria values of cloud providers

Provider C1l C2 C4 | C5 C7
AWS 99.99 | 6000 | 25 | 3000 | 0.95
Microsoft Azure | 99.95 | 5800 | 22 2800 | 0.93
Google Cloud 99.99 | 6200 | 28 | 3200 | 0.94
IBM Cloud 99.9 5500 | 15 | 2200 | 0.9
Oracle Cloud 99.92 | 5700 | 20 | 2500 | 0.88
DigitalOcean 99.85 | 5000 | 12 | 1800 | 0.75
Alibaba Cloud 99.94 | 5900 | 23 | 2900 | 0.9
Linode 99.8 4800 | 10 | 1700 | 0.7
Vultr 99.83 | 4900 | 11 | 1750 | 0.68
Hetzner 99.88 | 5200 | 14 | 1900 | 0.72

Table 3 denotes cost-type criteria (C3, C6, and C8),
where lower values indicate higher service quality.

Table 3 — Cost criteria values of cloud providers

Provider C3 C6 C8
AWS 95 0.6 1
Microsoft Azure 100 0.58 15
Google Cloud 90 0.62 1
IBM Cloud 110 0.65 2
Oracle Cloud 105 0.55 2.5
DigitalOcean 120 0.4 3
Alibaba Cloud 102 0.53 1.8
Linode 130 0.38 4
Vultr 125 0.35 4.2
Hetzner 115 0.3 3.5

These numbers (Table 2 and 3) are based on typical
ranges reported in industry benchmarks and public SLAS
for the given providers [16—25].

The sample pairwise comparisons between criteria
C1-C8 (Table 4) shows the relative importance ratings of
each pair of criteria according to the AHP [4], where the
values reflect the one criterion’s preference over another.

Table 4 — Pairwise comparisons between criteria C1-C8

Criteria | C1 | C2 | C3 | C4 | C5 | C6 |C7 | C8
Cl 1 1 3 3 5 4 2 6
C2 1 1 3 3 5 4 2 6
C3 13113 |1 2 3 2 1 3
C4 3113 |12 |1 2 2 1 2
C5 5|15 |13 112 |1 2 1 2
C6 V4|14 |12 |12 |12 |1 1 2
C7 12112 |1 1 1 1 1 2
C8 6 | 1/6 |13 |12 |12 |12 |12 |1

Hence, the maximum eigenvalue is 4,4, = 8.33 and
the consistency index is:

A -m 8.33-8
CI - max -
m-1 8-1

= 0.05. (10)

Having the random index for m = 8 is equal to RI =
1.41, the consistency rate is:

CI 0.05
CR=<L=9%
RI 1.41

=0.03 <0.1. (11)

Since obtained CR value is less than 10%, the given
in Table 4 pairwise comparisons between criteria C1-C8
can be considered to be consistent.

Table 5 shows the weights of criteria C1-C8 obtained
using the AHP method (expert assessment) and the entropy
approach (objective assessment based on data), as well as
balanced weights calculated using the coefficient & = 0.5,
which ensures an equal contribution of both approaches.

Table 5 — Weights of criteria C1-C8

Criteria AHP-based Entropy-based Balanced
C1 0.26 0.15 0.20
C2 0.26 0.14 0.20
C3 0.12 0.14 0.13
C4 0.09 0.11 0.10
C5 0.07 0.13 0.10
C6 0.06 0.12 0.09
C7 0.09 0.14 0.12
C8 0.04 0.06 0.05

Fig. 4 shows how balanced weights of criteria C1-C8
change when the coefficient « is changed from 0 to 1.

0,30

Weight
=
s

0,00
0.00 0,20 0,40 0.60 0.80 1,00

C1 (% uptime)
C3 (ms latency)

C2 (hours MTBF)
C4 (instances/min)
C6 (USD/hour)

—=— C7 (0-1 compliance) —— C8§ (hours response)

—— C5 (requests/sec)

Fig. 4. Balanced weights of criteria with different a

Table 6 demonstrates normalized benefit-type criteria
values obtained using (7) based on the original values from
SLAs and benchmarks given in Table 3.

Table 6 — Normalized benefit-type criteria values

Provider C1l C2 C4 C5 C7

AWS 1.00 0.86 | 0.83 | 0.87 1.00
Microsoft Azure | 0.79 0.71 0.67 | 0.73 0.93
Google Cloud 1.00 1.00 1.00 | 1.00 | 0.96
IBM Cloud 0.53 0.50 | 0.28 | 033 | 081
Oracle Cloud 0.63 0.64 | 0.56 | 0.53 0.74
DigitalOcean 0.26 014 | 0.11 | 0.07 | 0.26
Alibaba Cloud 0.74 079 | 0.72 | 080 | 0.81
Linode 0.00 0.00 | 0.00 | 0.00 | 0.07
Vultr 0.16 0.07 | 0.06 | 0.03 | 0.00
Hetzner 0.42 029 | 0.22 | 013 | 0.15

Table 7 outlines normalized cost-type criteria values
obtained using (8) based on the original values from SLAs
and benchmarks given in Table 4.
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Table 7 — Normalized cost-type criteria values

Provider C3 C6 C8

AWS 0.88 0.14 1.00
Microsoft Azure 0.75 0.20 0.84
Google Cloud 1.00 0.09 1.00
IBM Cloud 0.50 0.00 0.69
Oracle Cloud 0.63 0.29 0.53
DigitalOcean 0.25 0.71 0.38
Alibaba Cloud 0.70 0.34 0.75
Linode 0.00 0.77 0.06
Vultr 0.13 0.86 0.00
Hetzner 0.38 1.00 0.22

For example, the aggregated estimate for i = 1 (i.e.
AWS provider) is calculated using WSM (9) as follows:

Q= Z}l:l Wi q1j =
=0.20-1.004+ 0.20-0.86 + 0.13-0.88 + (12)
+0.10-0.83 4+ 0.10-0.87 + 0.09-0.14 +
+0.12-1.00 4+ 0.05-1.00 = 0.84.

Another aggregated estimate, i.e. for i = 2 (i.e. Azure
provider) is calculated using WSM (9) as follows:

Q=Xj1 W qzj =
=0.20-0.79 4+ 0.20-0.71 + 0.13-0.75 +
+0.10-0.67 + 0.10-0.73 + 0.09 - 0.20 +

+0.12-0.93 + 0.05-0.84 = 0.72.

Table 8 demonstrates weighted normalized values of
benefit-type criteria (Table 6).

(13)

Table 8 — Weighted normalized benefit-type criteria values

Provider Cl C2 C4 C5 C7

AWS 0.20 0.17 | 0.08 | 0.09 0.12
Microsoft Azure | 0.16 0.14 0.07 | 0.07 0.11
Google Cloud 0.20 020 | 0.10 | 0.10 | 0.11
IBM Cloud 0.11 0.10 | 0.03 | 0.03 | 0.10
Oracle Cloud 0.13 0.13 | 0.06 | 0.05 | 0.09
DigitalOcean 0.05 0.03 | 0.01 | 0.01 0.03
Alibaba Cloud 0.15 0.16 | 0.07 | 0.08 | 0.10
Linode 0.00 0.00 | 0.00 | 0.00 | 0.01
Vultr 0.03 0.01 | 0.01 | 0.00 | 0.00
Hetzner 0.09 0.06 | 0.02 | 0.01 0.02

Table 9 demonstrates weighted normalized values of
cost-type criteria (Table 7).

Table 9 — Weighted normalized cost-type criteria values

Provider C3 C6 C8

AWS 0.12 0.01 0.05
Microsoft Azure 0.10 0.02 0.04
Google Cloud 0.13 0.01 0.05
IBM Cloud 0.07 0.00 0.04
Oracle Cloud 0.08 0.03 0.03
DigitalOcean 0.03 0.07 0.02
Alibaba Cloud 0.09 0.03 0.04
Linode 0.00 0.07 0.00
Vultr 0.02 0.08 0.00
Hetzner 0.05 0.09 0.01

Fig. 5 shows the examples of the obtained total scores
for each of the ten cloud providers, calculated using the
WSM with balanced criteria weights, where the balance
coefficientis @ = 0.5.

Aws I 0,84
Microsoft Azure [ 0.72
Google Cloud I o1
IBM Cloud [ 0.47
Oracle Clond I 0.59
DigitalOcean [N 0.25
Alibaba Clond [ 0,72

Linode [ 0.08
vulr [ 0,15
Hetzner [N 035

Fig. 5. Total quality assessment scores for « = 0.5

The outlined example calculation takes into account
expert assessments and objective weights obtained using
the entropy analysis.

As can be seen from Fig. 5, GCP received the highest
score (0.91), indicating its superiority in most key quality
criteria. Next are AWS (0.84), Microsoft Azure (0.72), and
Alibaba Cloud (0.72) which also have high scores.

In contrast, DigitalOcean (0.25), Linode (0.08), and
Vultr (0.15) received the lowest scores, indicating limited
compliance with the considered criteria.

Fig. 6 demonstrates domination of GCP and AWS on
the radar chart.

AWS Microsoft Azure ™ Google Cloud
IBM Cloud M Oracle Cloud DigitalOcean
M Alibaba Cloud ™ Linode W Vultr
B Hetzner

C1 (% uptime)
0.25

C8 (hours
response) 0.20 C2 (hours MTBF)
0.15
0.10
N 0.0,
cu;zal(ig;]lcc) C3 (ms latency)

C6 (USD/hour) C4 (instances/min)

C5 (requests/sec)
Fig. 6 — Domination of GCP and AWS for ¢ = 0.5

Such a visual comparison of assessed cloud providers
can be further developed to create interactive analytical
dashboards to support intelligent decision-making. This
can be achieved by introducing “what if” analysis and Al-
driven conversational suggestions and insights.

Conclusion and future work. This study proposed a
Hybrid Expert-derived with Entropy-based Weighted Sum
Model (HEE-WSM) for the cloud infrastructure quality
assessment, which combines the WSM with a dual criterion
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weighting approach. This approach takes into account both
subjective expert assessments (AHP-based) and objective
statistical data (entropy-based), which allows achieving a
balance between user judgment and technical indicators.
The model uses eight quality criteria C1-C8 based on NIST
and ISO/IEC 25010 standards, covering key parameters of
cloud services, including availability, latency, scalability,
cost, security, and others. The results of 10 leading cloud
providers analysis show the robustness of the proposed
approach for decision-making in the cloud environment.

In the future, the model should be extended by adding
real-time monitoring and using machine learning methods
to adjust weights based on load type and context
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