
ISSN 2311-4738 (print), ISSN 2413-3000 (online)

 Вісник Національного технічного університету «ХПІ».

78 Серія: Стратегічне управління, управління портфелями, програмами та проектами. 2025. № 2(11)

UDC 004.93:004.415.2 DOI: 10.20998/2413-3000.2025.11.9

O. CHEREDNICHENKO, V. MALIARENKO

THE DISPATCHER: BRIDGING THE PROBABILISTIC GAP IN AUTOMATED DECISION

MODELING

In the contemporary landscape of Software Engineering and Business Process Management (BPM), the integration of generative artificial intelligence
has precipitated a paradigm shift from manual, deterministic specification to automated, probabilistic generation. While offering scalability, this

transition introduces a fundamental volatility known as the "Probabilistic Gap"—the chasm between the fluid, high-variance output of Large Language

Models (LLMs) and the strict, zero-tolerance syntactic requirements of execution engines like DMN (Decision Model and Notation). This paper addresses
the "Struc-Bench Paradox," highlighting the limitations of transformer architectures in generating complex structured data without rigid orchestration.

The study formally defines and implements the "Dispatcher," a pivotal control plane component designed to function as an intelligent resource arbiter

and quality gatekeeper within a neuro-symbolic architecture. The theoretical framework shifts the economic focus from Baumol’s Cost Disease, which
addresses production speed, to Boehm’s Law of Software Economics, which emphasizes the exponential cost of defects propagated to production. To

operationalize this, the Dispatcher represents a discrete deterministic process modeled using Cost-Colored Petri Nets rather than Finite State Machines
(FSMs). The Petri Net formalism allows for precise modeling of concurrency, state accumulation, and the strict enforcement of "Retry Budgets," thereby

mathematically guaranteeing system termination and preventing infinite loops of costly regeneration. The architectural implementation utilizes a "Test-

First" generation philosophy: the system first synthesizes validation criteria (JSON test cases) utilizing Schema Injection and RAG, and subsequently
grounds the generation of DMN logic (XML) in these pre-validated scenarios. Experimental analysis was conducted using a controlled set of 200

generation cycles to evaluate two distinct error-recovery strategies: Strategy A (Independent regeneration of DMN tables only) and Strategy B

(Joint/Dynamic regeneration of both DMN and Test Cases). Quantitative results demonstrate that Strategy B is economically superior, achieving a 6.06%
reduction in total cost and an 8.44% reduction in token consumption compared to the independent patching approach. The findings indicate that

simultaneous regeneration empowers the LLM to resolve semantic incoherence and hallucinations more effectively than iterative repairs, prioritizing

logical consistency over partial code retention. The study concludes that the Dispatcher effectively bridges the neuro-symbolic divide by transforming
validation from a post-production manual review into a pre-production automated cycle. By enforcing a "Stop-Loss" mechanism driven by economic

constraints, the framework minimizes the Total Cost of Ownership and serves as a critical "Trust Proxy," mitigating automation bias and ensuring that

AI-generated artifacts meet the rigorous reliability standards required for enterprise deployment.

Keywords: Large Language Models; Automated Decision Modeling; Petri Nets; Validation and Verification; Business Process Management

О. Ю. ЧЕРЕДНІЧЕНКО, В. В. МАЛЯРЕНКО

ДИСПАТЧЕР: ПОДОЛАННЯ ІМОВІРНІСНОГО РОЗРИВУ В АВТОМАТИЗОВАНОМУ

МОДЕЛЮВАННІ РІШЕНЬ

У сучасному ландшафті управління бізнес-процесами (BPM) та програмної інженерії інтеграція генеративного штучного інтелекту зумовила
фундаментальний зсув парадигми від ручної детермінованої специфікації до автоматизованої імовірнісної генерації. Цей перехід,

забезпечуючи безпрецедентну масштабованість, створює критичний «імовірнісний розрив» між стохастичною природою великих мовних

моделей (LLM) та суворими синтаксичними вимогами середовищ виконання рішень, таких як DMN (Decision Model and Notation).
Дослідження фокусується на вирішенні проблеми «Struc-Bench Paradox», яка демонструє нездатність стандартних трансформерних архітектур

надійно генерувати складні структуровані дані без зовнішнього керування. Центральним елементом запропонованого рішення є «Dispatcher»

(Диспатчер) – архітектурний компонент, що виконує роль інтелектуального арбітра ресурсів та шлюзу якості в нейро-символічній системі.
Методологічною основою роботи є перехід від економічної теорії «хвороби витрат Баумоля», яка пріоритезує швидкість виробництва, до

«закону економіки ПЗ Боема», що встановлює логарифмічну залежність між часом виявлення дефекту та вартістю його виправлення. Для
формалізації дискретних детермінованих процесів Диспатчера у роботі застосовано математичний апарат Мереж Петрі (Cost-Colored Petri

Nets) замість класичних скінченних автоматів (FSM). Це дозволило ефективно моделювати стан системи, управляти конкурентністю процесів

та суворо контролювати бюджет повторних спроб (retry budget), уникаючи ризиків нескінченних циклів регенерації та «спіралі смерті» витрат
токенів. Реалізація системи базується на патерні «Test-First Generation», де процес валідації відокремлено від генерації бізнес-логіки: спочатку

формуються тестові кейси (JSON), і лише на їх основі генерується DMN-модель, яка негайно перевіряється вбудованим рушієм Camunda.

Емпірична частина дослідження включає аналіз ефективності двох стратегій відновлення після помилок на вибірці з 200 циклів генерації:
Стратегії А (незалежна регенерація тільки таблиці DMN) та Стратегії B (спільна регенерація DMN та тестових кейсів). Результати

експерименту виявили контрінтуїтивну перевагу Стратегії B, яка продемонструвала зниження загальної вартості генерації на 6,06% та

скорочення споживання токенів на 8,44%, при досягненні 100% успішності валідації. Доведено, що повна регенерація контексту дозволяє

LLM усунути логічні галюцинації ефективніше, ніж ітеративне виправлення окремих фрагментів коду. Отримані результати підтверджують,

що Диспатчер виступає економічним щитом підприємства, забезпечуючи принцип «fail fast and fix cheap» (швидка помилка – дешеве

виправлення). Впровадження запропонованого фреймворку трансформує процес створення моделей рішень з ризикованого експерименту у
надійну інженерну дисципліну, де символічний валідатор виступає гарантом істини для нейронного генератора, забезпечуючи довіру

користувачів та стабільність бізнес-систем.

Ключові слова: великі мовні моделі, автоматизоване моделювання рішень, мережі Петрі, валідація та верифікація, управління бізнес-

процесами.

1. Introduction. In the contemporary landscape of

software engineering and Business Process Management,

the integration of generative artificial intelligence has

precipitated a paradigm shift. We are moving from an era

of manual, deterministic specification to one of automated,

probabilistic generation. This transition, while offering

unprecedented scalability, introduces a fundamental

volatility into the heart of enterprise architecture. The

central challenge is no longer the generation of code or

logic – Large Language Models have demonstrated

sufficiency in this regard – but rather the rigid orchestration

of these non-deterministic outputs into reliable, executable

artifacts.

This report focuses on the Dispatcher, the pivotal

component of a proposed framework designed to automate

the creation of Decision Model and Notation artifacts. The

© O. Cherednichenko, V. Maliarenko, 2025

 ISSN 2311-4738 (print), ISSN 2413-3000 (online)

Вісник Національного технічного університету «ХПІ».

Серія: Стратегічне управління, управління портфелями, програмами та проектами. 2025. № 2(11) 79

Dispatcher is not merely a message router; it is an

intelligent control system, a resource arbiter, and a quality

gatekeeper. It exists to bridge the "Probabilistic Gap" – the

chasm between the fluid, high-variance output of an LLM

and the strict, zero-tolerance syntactic requirements of a

DMN execution engine like Camunda.

Historically, the automation of decision logic has been

viewed through the lens of Baumol’s Cost Disease, which

posits that labor-intensive sectors, like business analysis,

suffer from stagnant productivity compared to

manufacturing [1]. While valid, this economic theory

addresses only the speed of production. In the context of

AI-generated code, the more pressing economic principle

is Boehm’s Law of Software Economics [2]. It is often cited

in quality engineering contexts as Bem’s Law of the cost of

defects.

Boehm’s Law establishes a logarithmic relationship

between the time a defect remains in a system and the cost

to repair it [3]. An error in a decision table caught during

the drafting phase costs strictly the time required to rewrite

a line of text. The same error, if propagated to a production

runtime environment, incurs costs related to system

downtime, regulatory fines, customer service remediation,

and reputational damage. The cost differential can arguably

exceed 100:1.

Therefore, the primary economic mandate of the

Dispatcher is not simply to "generate DMN fast"

(addressing Baumol) but to "fail fast and fix cheap"

(addressing Boehm). By encapsulating the generation

process within a rigorous, iterative validation loop, the

Dispatcher spends cheap computational resources, like

tokens, to prevent expensive operational failures. It

transforms the validation process from a post-production

manual review into a pre-production automated cycle.

This report aims to:

1. Formally define the Dispatcher abstraction and its

role in the wider framework.

2. Provide a comparative mathematical modeling of

the Dispatcher’s behavior, specifically analyzing the trade-

offs between Finite State Machines and Petri Nets [9] in

representing its discrete deterministic processes.

3. Detail the concrete implementation of the

Dispatcher as a backend service.

4. Analyze the efficiency of different validation

strategies using empirical data, focusing on token

consumption and cost optimization.

5. Derive conclusions regarding the critical

importance of the Dispatcher in enabling safe, autonomous

BPM systems.

2. Related Works. The DMN has emerged as the

industry standard for bridging the communication gap

between business analysts and technical developers. DMN

provides a standardized XML-based syntax for defining

decision tables and FEEL logic, allowing organizations to

externalize decision rules from application code. This

externalization is crucial for agility, compliance, and

maintainability.

The core of DMN is the Decision Table, which maps

a set of inputs to a set of outputs based on a list of rules.

Crucial to the deterministic nature of DMN are Hit Policies

(e.g., Unique, Any, Priority, First), which dictate how the

engine resolves scenarios where multiple rules match the

input data. A violation of the Hit Policy (e.g., overlapping

rules in a 'Unique' table) renders the model invalid and halts

execution. The complexity of DMN lies in its combination

of structural rigidity (strict XML schema validation) and

expressive power (FEEL functions for string manipulation,

date calculations, and list filtering).

Recent academic discourse highlights the

"Complexity Wall" in manual DMN creation. As the

number of input variables and rules increases, the state

space grows combinatorially [4]. This "Combinatorial

Explosion" exceeds the cognitive capacity of human

analysts, leading to errors of omission or contradiction that

are difficult to detect manually. This limitation underscores

the necessity for automated generation, yet simultaneously

raises the bar for the quality of that automation.

Recent research into the capabilities of Large

Language Models has identified a phenomenon known as

the "Struc-Bench Paradox". Study [5] indicates that while

LLMs excel at generating coherent natural language, they

struggle significantly with complex structured data

generation. The probabilistic nature of the Transformer

architecture is optimized for semantic flow and narrative

coherence, not for the rigid syntactic constraints of formal

languages like XML or JSON.

LLMs frequently lose track of long-range

dependencies in XML structures (e.g., closing tags opened

hundreds of tokens prior) or fail to maintain type

consistency across a decision table. Experiments using

GPT-3 for DMN generation have shown "underwhelming"

results when used in a zero-shot, unconstrained manner,

often failing to understand critical logical concepts such as

mutual exclusivity and completeness [6]. The models may

generate a table that appears correct to a human reader but

fails validation due to subtle schema violations or

"hallucinated" FEEL functions that do not exist in the

standard specification. This necessitates a shift from simple

"Prompt Engineering" to robust "Neuro-Symbolic

Architectures," where the LLM is treated as a stochastic

component within a larger, deterministic system.

The proposed solution aligns with the emerging field

of Neuro-Symbolic AI [7, 13], which seeks to combine the

learning and generative capabilities of neural networks with

the reasoning and guarantees of symbolic logic. In this

context, the LLM provides the "Neuro" component – the

ability to translate fuzzy, unstructured intent into draft code

– while the Dispatcher and the DMN Engine provide the

"Symbolic" component – the verification of syntax, logic,

and execution.

Research [8, 12] indicates that RAG significantly

improves the factual accuracy of LLMs by grounding

generation in retrieved documents, such as domain-specific

policy manuals or schema definitions. Furthermore, the

concept of "Self-Correction" or "Self-Healing" loops has

gained traction. However, as noted in "Struc-Bench," self-

correction is only effective if the external signal (the error

message) is precise and the system has a strategy to utilize

it effectively [15]. This report explores specifically how to

orchestrate that correction loop efficiently, moving beyond

simple retries to strategic regeneration.

ISSN 2311-4738 (print), ISSN 2413-3000 (online)

 Вісник Національного технічного університету «ХПІ».

80 Серія: Стратегічне управління, управління портфелями, програмами та проектами. 2025. № 2(11)

The implementation of the Dispatcher also addresses

critical human factors in AI adoption. Trust in AI systems

is heavily influenced by Transparency and Reliability [10].

The "Black Box" nature of LLMs reduces trust, as users

cannot see the internal reasoning process. By wrapping the

LLM in a Dispatcher that validates output against explicit

test cases, the system provides a powerful transparency

mechanism – users can see why a model was accepted,

because it passed specific tests, or why it was rejected.

Moreover, the literature suggests that user Mental

Models play a crucial role in the successful deployment of

AI. Users with inaccurate mental models of AI capabilities

may over-rely on the system, accepting incorrect outputs

without scrutiny, or under-rely on it, rejecting valid outputs

due to skepticism. The Dispatcher mitigates over-reliance

by acting as a hard quality gate; it simply refuses to present

an invalid model to the user, thereby enforcing a baseline

of reliability that fosters appropriate trust. The "Feeling of

Rightness" and "Feeling of Error" are metacognitive

signals that influence user reliance [11]; the Dispatcher's

explicit validation reports align these feelings with the

actual technical reality of the generated artifact.

3 Formalizing the Dispatcher. In the framework, the

Dispatcher represents the Control Plane. The architecture

separates the Request, the Generator, and the Validator.

The Dispatcher sits at the intersection of these three

vectors.

It functions as a feedback transducer. Current LLMs

lack internal feedback loops; they generate token t+1 based

on token t without the ability to pause, test, and retract. The

Dispatcher imposes this missing loop externally, acting as

the analytic layer over the generative layer.

To engineer a robust Dispatcher, we must move

beyond ad-hoc scripting and strictly define its behavior

using mathematical formalisms. This allows us to prove

properties about the system, such as termination, resource

boundedness, and deadlock freedom. The two primary

candidates for modeling discrete event systems like the

Dispatcher are Finite State Machines and Petri Nets.

3.1 Finite State Machines.

A Finite State Machine is a computational model

consisting of a finite number of states, transitions between

those states, and inputs. Formally, a deterministic finite

automaton is a 5-tuple:

𝑀 = (𝑄, Σ, 𝛿 , 𝑞0, 𝐹)

Where:

Q is a finite set of states (e.g., Idle, Generating,

Validating, Success, Failure).

Σ is a finite set of input symbols (e.g.,

ReceiveRequest, GenSuccess, GenFail, ValSuccess,

ValFail).

𝛿 is a transition function QQ.

𝑞0 is the start state.

F is the set of accepted states.

An FSM can model the basic lifecycle of a request:

1. Start in Idle.

2. On “Receive Request”, transition to Generating.

3. On “GenSuccess”, transition to Validating.

4. On “ValSuccess”, transition to Success (Final).

5. On “ValFail”, transition back to Generating.

The limitation of the FSM becomes apparent when we

introduce resources, specifically the "Retry Limit." An

FSM has no internal memory of how many times it has

visited a state. To model a retry limit of 5, an FSM

essentially requires distinct states for each attempt. Figure

1 demonstrates a potential infinite loop in FSM

representation of Dispatcher.

Fig. 1. Potential issue with FSM Dispatcher

The complexity of the diagram grows linearly with the

magnitude of the counter. Furthermore, FSMs are

inherently sequential. They cannot easily model a scenario

where the Dispatcher generates the DMN and the Test

Cases in parallel threads and waits for both to complete

before validating.

3.2 Petri Nets.

A Petri Net is a mathematical modeling language for

the description of distributed systems [9]. It is a directed

bipartite graph. Formally, a Petri Net is a tuple:

𝑃𝑁 = (𝑃, 𝑇, 𝐹, 𝑊, 𝑀0)

Where:

P is a finite set of Places (represented by circles).

Places hold Tokens.

T is a finite set of Transitions (represented by

bars/rectangles).

𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is a set of flow relations

(arcs) connecting Places to Transitions and Transitions to

Places.

W is a weight function (how many tokens are

consumed/produced).

𝑀0 is the initial marking (distribution of tokens).

The Dispatcher is best modeled as a High-Level Petri

Net or a Colored Petri Net, where tokens utilize values

(attributes).

Places (P)

- 𝑃𝑖𝑛 – Incoming Requests.

- 𝑃𝑏𝑢𝑑𝑔𝑒𝑡 – Available Retries.

- 𝑃𝑔𝑒𝑛 – The system is generating.

- 𝑃𝑣𝑎𝑙 – The system is validating.

- 𝑃𝑜𝑢𝑡 – final Output.

Transitions (T)

- 𝑇𝑠𝑡𝑎𝑟𝑡 moves token from 𝑃𝑖𝑛 to 𝑃𝑔𝑒𝑛.

 ISSN 2311-4738 (print), ISSN 2413-3000 (online)

Вісник Національного технічного університету «ХПІ».

Серія: Стратегічне управління, управління портфелями, програмами та проектами. 2025. № 2(11) 81

- 𝑇𝑟𝑒𝑡𝑟𝑦 consumes 1 token from 𝑃𝑏𝑢𝑑𝑔𝑒𝑡 . If Pbudget is

empty, this transition cannot fire. This natively enforces the

logic: "If retries > 0, then regenerate."

- 𝑇𝑎𝑏𝑜𝑟𝑡 fires only when 𝑃𝑏𝑢𝑑𝑔𝑒𝑡 is empty and

validation fails.

The fundamental constraint of the Dispatcher is the

"Retry Limit" (driven by cost). Petri Nets model this

naturally through the initial marking 𝑀0(𝑃𝑏𝑢𝑑𝑔𝑒𝑡) = 5. The

availability of a token in the Pbudget place is a hard

requirement for the 𝑇𝑟𝑒𝑡𝑟𝑦 transition. If the place is empty,

the logic physically prevents the Dispatcher from retrying,

enforcing the "Stop-Loss" strictly without the need for

external counters or state explosion.

Petri Nets natively handle concurrency. If we decide

to optimize speed by generating DMN and Test Cases

simultaneously, a Petri Net handles this with a "Fork"

transition (one input token produces two output tokens into

parallel places (e.g., 𝑃𝑔𝑒𝑛𝐷𝑀𝑁 and 𝑃𝑔𝑒𝑛𝑇𝑒𝑠𝑡) and a "Join"

transition (which waits for tokens in both parallel places

before firing). FSMs cannot model this without extreme

complexity.

Petri Nets allow us to visualize the flow of the process

and the accumulation of state (tokens) simultaneously.

Fig. 2. Petri Net Visualisation

We can extend this to a Cost-Colored Petri Net where

each transition t is associated with a cost function 𝐶(𝑡). The

total cost of a trace is the summation of costs of all fired

transitions. This maps directly to the economic analysis of

token consumption, allowing for precise modeling of

operational expenditure.

For the purpose of this framework, we define the

Dispatcher as a Discrete Deterministic Process modeled by

a Petri Net. This choice allows us to strictly define the state

space while explicitly managing the economic constraints,

represented by the budget tokens, that govern the system's

operation. It provides the mathematical rigor necessary to

prove that the system will eventually terminate either in

Success or Exhaustion and will never enter an infinite loop

of costly regeneration.

4 Dispatcher Implementation. Having defined the

abstraction and the mathematical model, we now describe

the Dispatcher as it exists in the current technological

implementation. The architecture is designed around a

"Micro-Kernel" pattern where the Dispatcher orchestrates

specialized modules, ensuring separation of concerns and

scalability.

4.1 Component Architecture.

The system consists of the following core modules,

orchestrated by the Dispatcher shown on Figure 3.

The Dispatcher accepts the RuleSet, manages the

RetryBudget, and maintains the state of the transaction. It

acts as the "Single Source of Truth" for the modeling

process.

ISSN 2311-4738 (print), ISSN 2413-3000 (online)

 Вісник Національного технічного університету «ХПІ».

82 Серія: Стратегічне управління, управління портфелями, програмами та проектами. 2025. № 2(11)

Schema Injector takes the target JSON schema and

injects the schema definition directly into the prompt

context. This constrains the LLM's search space,

preventing it from hallucinating variable names which

would cause immediate validation failures.

Prompt Composer is responsible for assembling all

necessary input elements into a structured prompt. It

combines:

- System Instructions – syntax rules like "Return only

XML" or "Do not use markdown formatting".

- Schema Context – the output from the Schema

Injector.

- RAG Content external knowledge retrieved from the

knowledge base (e.g., domain policies, previous successful

models).

- User Rule Set the natural language description of the

logic.

- Retry Context if in a retry loop, it appends the

previous error log and the failed XML to guide the

correction.

Generation Module is an interface to the probabilistic

agent (e.g., GPT-4 or Claude 3.5 Sonnet). It handles API

communication, token limits, and temperature settings. For

code generation tasks, the temperature is typically set low

(T=0 to 0.3) to minimize variance and maximize

determinism.

Validator Module is a deterministic verification

engine. It performs a multi-stage check:

- Syntax Checker validates against the DMN XML

Schema (XSD).

- Semantic Checker parses FEEL expressions for type

safety.

- Logic Checker runs the generated DMN against

generated Test Cases using an embedded Camunda DMN

Engine.

Fig. 3. Framework Structure

4.2 The Execution Flow.

The Dispatcher’s execution flow orchestrates a

sophisticated, multi-stage process designed to enforce

reliability through a "Test-First" generation philosophy.

Unlike rigorous single-shot approaches, the architecture

decouples the creation of validation criteria from the

generation of business logic. The process initiates when the

Dispatcher receives a request and loads the relevant schema

definitions. In the first phase, the Prompt Composer

constructs a targeted prompt dedicated solely to generating

a comprehensive set of Test Cases in JSON format. This

utilizes the injected schema context and retrieved domain

knowledge to ensure the tests cover edge cases before any

decision logic is written.

Upon successfully receiving the structured Test

Cases, the Dispatcher transitions to the second phase: DMN

generation. The Prompt Composer constructs a new,

distinct prompt that incorporates the user's natural language

rules alongside the specific Test Cases generated in the

previous step. This architectural pattern grounds the Large

Language Model, effectively instructing it to write XML

logic that satisfies the concrete data scenarios already

defined. This significantly reduces the hallucination of

variables, as the model is constrained by the strict structure

of the pre-generated test data.

Once the DMN XML is generated, the Dispatcher

does not merely store the artifact but subjects it to

immediate, execution-based validation. The system spins

up an instance of the embedded Camunda DMN engine and

executes the newly created logic against the Test Cases.

This internal loop acts as the process's immune system,

comparing the engine's actual computed outputs against the

expected results. If the validation passes, the artifact is

stamped as valid and returned to the user.

However, if a discrepancy arises – whether a syntax

violation or a logical mismatch where the actual output

differs from the expected – the Dispatcher triggers a

convergence loop. The exact error context is captured and

fed back into the subsequent generation prompt, instructing

the model to debug its previous output. This iterative

refinement continues until the system converges on a

solution that passes all tests or until the operational Retry

Budget is exhausted, ensuring the system fails fast and fixes

cheaply according to the economic principles defined

earlier.

 ISSN 2311-4738 (print), ISSN 2413-3000 (online)

Вісник Національного технічного університету «ХПІ».

Серія: Стратегічне управління, управління портфелями, програмами та проектами. 2025. № 2(11) 83

Fig. 4. Execution Sequence Diagram

4.3 Parameters and Configuration.

The Dispatcher's operation is defined by a set of

organization-configured parameters. Parameters, which

represent system constraints, include Max_Retries, a hard

limit on the processing budget, the Model_Temperature,

which determines the variance and determinism of the

underlying AI model and Validation_Strategy taht allows

the Dispatcher to select between a fast, low-confidence

"Syntax Only" check and the more rigorous, expensive, and

slow "Full Semantic Execution." The current system

implementation is configured to use the "Full Semantic

Execution" strategy.

5 Efficiency Optimization.

The introduction of the Dispatcher effectively

replaces the human labor cost with a computational

resource cost. While computing is cheap, it is not free. To

optimize this, we must rigorously define the cost function

governed by Boehm’s Law.

5.1 The Cost Function of Determinism.

We can define the cost of a single validated DMN

model (𝐶𝑚𝑜𝑑𝑒𝑙) as:

𝐶𝑚𝑜𝑑𝑒𝑙 = 𝐶𝑔𝑒𝑛 + ∑(𝐶𝑒𝑣𝑎𝑙 + 𝐶𝑓𝑖𝑥)

𝑁

𝑘=1

Where:

𝐶𝑔𝑒𝑛 – is the initial generation cost (Tokens In +

Tokens Out).

N – is the number of retries required.

𝐶𝑒𝑣𝑎𝑙 – is the computational cost of running the

validation engine (negligible in cloud terms, but non-zero

in time).

𝐶𝑓𝑖𝑥is the cost of the regeneration call.

Crucially, 𝐶𝑓𝑖𝑥tends to be higher than 𝐶𝑔𝑒𝑛because the

context window grows. The "Fix" prompt must contain:

(Original Rules + Original Prompt + Bad XML + Error Log

+ Fix Instruction). Thus, the cost of retries accelerates.

5.2 Boehm’s Law and the "Stop-Loss".

Boehm’s Law states that the cost of a defect grows

exponentially with the phase of detection. Let 𝐶𝑜𝑠𝑡𝑑𝑒𝑠𝑖𝑔𝑛 =

1𝑋. Let 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 100𝑋.

The Dispatcher’s goal is to minimize the Total Cost

of Ownership:

𝑇𝐶𝑂 = 𝐶𝑚𝑜𝑑𝑒𝑙 + (𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 × 𝐶𝑜𝑠𝑡𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛))

Where 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒– is the probability that a defective

model slips through the Dispatcher.

By implementing the Validation Loop, the Dispatcher

drives 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒toward zero. Even if the Dispatcher spends

5x the generation cost on retries, it is strictly economically

superior to releasing a bug that costs 10.

ISSN 2311-4738 (print), ISSN 2413-3000 (online)

 Вісник Національного технічного університету «ХПІ».

84 Серія: Стратегічне управління, управління портфелями, програмами та проектами. 2025. № 2(11)

Fig. 5. The theoretical intersection of cost and quality managed by the Dispatcher

However, there is a limit. If the model fails 5 times,

the probability of success on the 6th try drops significantly

(diminishing returns), while the cost accumulates. The

Retry Limit serves as the economic "Stop-Loss." It prevents

the "Death Spiral" where the AI consumes infinite tokens

trying to solve an impossible or poorly defined prompt. At

N=5, the Dispatcher admits defeat and escalates to a

human, preserving the remaining budget.

The Dispatcher tracks dependencies between

resources spent and value obtained.

- Input. Time and Money (Tokens).

- Output. Accuracy (Valid DMNs) and Automation

(Removal of Human).

The experimental data allows us to quantify this

relationship.

6 Experimental Analysis.

We analyze the performance of the Dispatcher based

on a controlled experiment comprising 200 generation

cycles. The experiment compares two distinct error-

recovery strategies utilized by the Dispatcher.

6.1 Experiment Setup

The modeling and experimental phase for Dispatcher

optimization involved running 200 requests with a

maximum limit of 5 retries. The core validation method

was to execute the generated Test Cases against the

corresponding DMN table. Two distinct strategies were

tested for handling validation failures.

Strategy A, the "Independent" approach, mandated

that upon a validation error, the Dispatcher would request a

regeneration of only the DMN Table, treating the original

Test Cases as the definitive "Ground Truth." In contrast,

Strategy B, the "Joint/Dynamic" approach, allowed for

more flexibility by instructing the Dispatcher to request a

simultaneous regeneration of both the DMN Table and the

Test Cases when a validation failure occurred. These

strategies aimed to compare the efficiency and

effectiveness of selectively regenerating components

versus regenerating them together to correct discrepancies.

6.2 Quantitative Results

The user provided summary statistics for the two

strategies.

Table 1 –Strategies Comparison

Metric Strategy A (DMN Only) Strategy B (Joint Regen) Improvement

Total Cost (USD) $21.96 $20.63 6.06% Savings

Total Tokens In 1,378,730 1,262,336 8.44% Reduction

Total Tokens Out 1,188,312 1,189,275 ~0% (Neutral)

Overall Success Rate 95.5% (191/200) 100% (200/200) 4.5% Improvement

 ISSN 2311-4738 (print), ISSN 2413-3000 (online)

Вісник Національного технічного університету «ХПІ».

Серія: Стратегічне управління, управління портфелями, програмами та проектами. 2025. № 2(11) 85

6.3 Interpretation of Results.

The experimental findings reveal a counter-intuitive

outcome critical to the Dispatcher's architectural design.

Initially, one might hypothesize that Strategy A would

prove more economical due to the reduced text generation

(only the DMN) during retry cycles. However, the data

indicates a higher total cost for this approach.

Analysis of the experiment logs suggests that DMN

failures frequently stem from inherent ambiguities or

hallucinations in the initial generation. When the

Dispatcher mandates the Language Model to rectify the

DMN to align with the originally generated – and

potentially flawed – test cases, the LLM encounters

significant difficulty. This situation precipitates a "conflict

state" wherein the logical reconciliation is unattainable.

The consequence is an increased number of retries

(reaching 3, 4, or 5 attempts), which inflates the

consumption of Input Tokens (history) and, consequently,

the overall operational cost.

In contrast, Strategy B (Joint Regeneration) provides

the Dispatcher with the capability to declare: "The current

logic is fundamentally inconsistent. The entire artifact must

be discarded and regenerated." By executing a

simultaneous regeneration of both the DMN and the Tests,

the LLM is empowered to construct a new, internally

coherent semantic structure. This process resolves the

initial ambiguity by initiating a clean slate. The data shows

that Strategy B achieves valid convergence faster (fewer

retries).

Even though each retry generates more tokens (DMN

+ JSON), the total number of retries drops significantly

enough to reduce the overall Token usage by 8.44%. The

experiment logs confirm the robustness of the Dispatcher

in Strategy B.

7 Discussion.

The analysis of the Dispatcher reveals broader

implications for the future of AI in BPM. The Dispatcher

effectively acts as an economic shield for the enterprise. By

strictly enforcing Boehm’s Law – catching errors when

they cost $0.10 at one retry rather than $10,000 at one

production incident. The cost of roughly $0.10 per

validated model is orders of magnitude lower than the

human equivalent, which would likely exceed hundreds of

dollars in billable hours for analysis and testing.

The superiority of Strategy B suggests a best practice

for Neuro-Symbolic systems: Coherence over Patching.

When a probabilistic model fails to produce a consistent

logical structure, it is often cheaper to discard the artifact

and regenerate it than to attempt iterative repairs. Strategy

B effectively implements "Test-Driven Development" for

AI. The model is forced to align its semantic understanding

of the problem across two different modalities (JSON data

and XML logic), filtering out hallucinations that would

appear in only one.

From a human factors perspective, the Dispatcher

serves as a "Trust Proxy." As noted in the literature, users

are prone to "Automation Bias" or "Algorithm Aversion"

based on their mental models of the AI's reliability.

Inaccurate mental models can lead to dangerous over-

reliance. The Dispatcher's strict validation regime ensures

that the system output is never a hallucination; it is either a

valid model or an error message.

This work contributes to the broader field of Neuro-

Symbolic AI by demonstrating a practical implementation

of the Neuro → Symbolic → Neuro Architecture. The

symbolic validator acts as the ground truth that guides the

neural generator. This overcomes the "Struc-Bench"

limitations not by making the LLM "smarter", which is

expensive and uncertain, but by placing it in a system that

makes it "safer." Future work should explore the integration

of formal verification methods (e.g., SMT solvers) into the

Validator module to provide even stronger guarantees than

test-based execution.

8 Conclusion.

The Dispatcher is the keystone of the automated

decision modeling framework. It transforms the integration

of Large Language Models into Business Process

Management from a risky experiment into a viable

engineering discipline.

By abstracting the non-deterministic interactions of

the AI into a discrete, deterministic process modeled by

Petri Nets, the Dispatcher ensures operational stability. It

manages the inherent trade-off between the cost of

generation and the accuracy of the result, leveraging the

logic of Boehm’s Law to minimize the Total Cost of

Ownership.

The experimental evidence unequivocally supports

the implementation of a Dispatcher that utilizes a Joint

Regeneration strategy. This approach, which prioritizes the

creation of internally consistent logic-validation pairs over

iterative patching, demonstrated a 6.06% reduction in cost

and an 8.44% reduction in token consumption compared to

traditional methods.

In conclusion, the Dispatcher validates the premise

that while AI can generate the logic, it is the deterministic

orchestration – the rigid framework of checks, balances,

and economic limits – that creates the value. It solves the

"Modeling Bottleneck" not just by working faster than a

human, but by validating cheaper than a human.

References

1. Baumol, W. J. (1967). Macroeconomics of Unbalanced Growth: The

Anatomy of Urban Crisis. The American Economic Review, 57(3),
415–426. DOI: 10.2478/ie-2023-0066.

2. Boehm, B. W. (1981). Software Engineering Economics. Prentice-

Hall. DOI: 10.1109/TSE.1984.5010193.
3. Boehm, B. W., & Basili, V. R. (2001). Software Defect Reduction

Top 10 List. Computer, 34(1), 135–137. DOI: 10.1109/2.962984.

4. Hasic, F., & Vanthienen, J. (2019). Complexity metrics for DMN
decision models. Computer Standards & Interfaces, 65, 15–37. DOI:

10.1016/j.csi.2019.01.001.

5. Tang, X., Zong, Y., Phang, J., Zhao, Y., Zhou, W., Cohan, A., &
Gerstein, M. (2024). Struc-Bench: Are Large Language Models Good

at Generating Complex Structured Tabular Data? Proceedings of the
2024 Conference of the North American Chapter of the Association

for Computational Linguistics (NAACL), 12–34. DOI:

10.18653/v1/2024.naacl-short.2.
6. Goossens, A., Vandevelde, S., Vanthienen, J., & Vennekens, J.

(2023). GPT-3 for Decision Logic Modeling. Proceedings of the 17th

International Rule Challenge @ RuleML+RR 2023, CEUR
Workshop Proceedings, Vol-3485.

7. Bhuyan, B. P., Ramdane-Cherif, A., Tomar, R., & Singh, T. P. (2024).

Neuro-symbolic artificial intelligence: a survey. Neural Computing
and Applications, 36, 12809–12844. DOI: 10.1007/s00521-024-

09960-z.

ISSN 2311-4738 (print), ISSN 2413-3000 (online)

 Вісник Національного технічного університету «ХПІ».

86 Серія: Стратегічне управління, управління портфелями, програмами та проектами. 2025. № 2(11)

8. Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., & Bi, Y. (2023).

Retrieval-Augmented Generation for Large Language Models: A

Survey. arXiv preprint. DOI: 10.48550/arXiv.2312.10997.
9. Weske, M. (2019). Business Process Management: Concepts,

Languages, Architectures (3rd ed.). Springer. DOI: 10.1007/978-3-

662-59432-2.
10. Kaplan, A. D., Kessler, T. T., Brill, J. C., & Hancock, P. A. (2023).

Trust in Artificial Intelligence: Meta-Analysis. Human Factors. DOI:

10.1177/00187208211013986.
11. Kaplan, A. D., Kessler, T. T., Brill, J. C., & Hancock, P. A. (2023).

Trust in Artificial Intelligence: Meta-Analysis. Human Factors,

65(2), 337–365. DOI: 10.1177/00187208211013988.
12. Etikala, V., Van Veldhoven, Z., & Vanthienen, J. (2020). Text2Dec:

Extracting Decision Dependencies from Natural Language Text for
Automated DMN Decision Modelling. Business Process

Management Workshops (BPM 2020). Lecture Notes in Business

Information Processing, 397. DOI: 10.1007/978-3-030-66498-5_27.

13. Goossens, A., De Smedt, J., & Vanthienen, J. (2023). Extracting
Decision Model and Notation models from text using deep learning

techniques. Expert Systems with Applications, 211, 118667. DOI:

10.1016/j.eswa.2022.118667.
14. Bork, D., Ali, S. J., & Dinev, G. M. (2023). AI-Enhanced Hybrid

Decision Management. Business & Information Systems Engineering,

65(2), 179-199. DOI: 10.1007/s12599-023-00790-2.
15. Abedi, S., & Jalali, A. DMN-Guided Prompting: A Low-Code

Framework for Controlling LLM Behavior. 2025. arXiv preprint

arXiv:2505.11701. DOI: 10.48550/arXiv.2510.16062

Received (надійшла) 14.11.2025

Відомості про авторів / About the Authors

Чередніченко Ольга Юріївна (Cherednichenko Olga) – доктор технічних наук, доцент, професор кафедри

програмної інженерії та інтелектуальних технологій управління, Національний технічний університет

«Харківський політехнічний інститут», м. Харків, Україна; e-mail: Olga.Cherednichenko@khpi.edu.ua;

ORCID: http://orcid.org/0000-0002-9391-5220.

Маляренко Владислав Вікторович (Maliarenko Vladyslav) – аспірант кафедри управління проєктами в

інформаційних технологіях, Національний технічний університет «Харківський політехнічний інститут»,

м. Харків, Україна; e-mail: Vladyslav.Maliarenko@cs.khpi.edu.ua; ORCID: http://orcid.org/0009-0009-6064-061X.

