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THE DISPATCHER: BRIDGING THE PROBABILISTIC GAP IN AUTOMATED DECISION
MODELING

In the contemporary landscape of Software Engineering and Business Process Management (BPM), the integration of generative artificial intelligence
has precipitated a paradigm shift from manual, deterministic specification to automated, probabilistic generation. While offering scalability, this
transition introduces a fundamental volatility known as the "Probabilistic Gap"—the chasm between the fluid, high-variance output of Large Language
Models (LLMs) and the strict, zero-tolerance syntactic requirements of execution engines like DMN (Decision Model and Notation). This paper addresses
the "Struc-Bench Paradox," highlighting the limitations of transformer architectures in generating complex structured data without rigid orchestration.
The study formally defines and implements the "Dispatcher," a pivotal control plane component designed to function as an intelligent resource arbiter
and quality gatekeeper within a neuro-symbolic architecture. The theoretical framework shifts the economic focus from Baumol’s Cost Disease, which
addresses production speed, to Boehm’s Law of Software Economics, which emphasizes the exponential cost of defects propagated to production. To
operationalize this, the Dispatcher represents a discrete deterministic process modeled using Cost-Colored Petri Nets rather than Finite State Machines
(FSMs). The Petri Net formalism allows for precise modeling of concurrency, state accumulation, and the strict enforcement of "Retry Budgets," thereby
mathematically guaranteeing system termination and preventing infinite loops of costly regeneration. The architectural implementation utilizes a "Test-
First" generation philosophy: the system first synthesizes validation criteria (JSON test cases) utilizing Schema Injection and RAG, and subsequently
grounds the generation of DMN logic (XML) in these pre-validated scenarios. Experimental analysis was conducted using a controlled set of 200
generation cycles to evaluate two distinct error-recovery strategies: Strategy A (Independent regeneration of DMN tables only) and Strategy B
(Joint/Dynamic regeneration of both DMN and Test Cases). Quantitative results demonstrate that Strategy B is economically superior, achieving a 6.06%
reduction in total cost and an 8.44% reduction in token consumption compared to the independent patching approach. The findings indicate that
simultaneous regeneration empowers the LLM to resolve semantic incoherence and hallucinations more effectively than iterative repairs, prioritizing
logical consistency over partial code retention. The study concludes that the Dispatcher effectively bridges the neuro-symbolic divide by transforming
validation from a post-production manual review into a pre-production automated cycle. By enforcing a "Stop-Loss" mechanism driven by economic
constraints, the framework minimizes the Total Cost of Ownership and serves as a critical "Trust Proxy," mitigating automation bias and ensuring that
Al-generated artifacts meet the rigorous reliability standards required for enterprise deployment.
Keywords: Large Language Models; Automated Decision Modeling; Petri Nets; Validation and Verification; Business Process Management

O. 0. YEPE/THIYEHKO, B. B. MAJTAPEHKO

JUCHHATYEP: IIOJOJAHHA IMOBIPHICHOT' O PO3PUBY B ABTOMATHU30BAHOMY
MOJEJ/JIIOBAHHI PIITEHDb

V cywacHoMy nmanamadrTi ynpasiiHas 6i3Hec-miporniecamu (BPM) Ta mporpaMuoi iHkeHepii iHTerpaitis reHepaTHBHOTO ITYYHOTO iHTENEKTY 3yMOBHUIIA
(yHIaMeHTaNBHMI 3CyB TapajWrMM BiJ pydYHOi JeTepMmiHOBaHOI crenudikarii 1o aBToMaTH30BaHOI iMoOBipHiCHOI Temepamii. lle# mepexin,
3abe3nedyroun Oe3npereeHTHy MaclTaboBaHICTh, CTBOPIOE KPUTUYHHN «iMOBIPHICHUI PO3PUBY» MK CTOXaCTHYHOIO NMPUPOJIOI0 BEIUKHX MOBHHUX
mozenei (LLM) Ta cyBOpHMHM CHHTaKCHYHUMH BHMOTAMH CEPEJOBHII BHKOHAHHs pimenb, Takux sk DMN (Decision Model and Notation).
Jocimpkerns GokycyeTbes Ha BUpimeHHi mpodiaemu «Struc-Bench Paradox», sika 1eMOHCTpy€e He31aTHICTh CTAaHAAPTHUX TPaHC(HOPMEPHHX apXiTEKTyP
Ha/IiiHO TeHepyBaTH CKJIaJHi CTPYKTYpOBaHi faHi 0e3 30BHIIIHBOTO KepyBaHHA. L{eHTpanbHUM €JeMEHTOM 3alpONOHOBAHOrO pimeHHs € «Dispatcher»
(ducnardep) — apXiTeKTypHHI KOMIIOHEHT, [0 BUKOHY€ POJIb iHTEIEKTyalbHOTrO apOiTpa pecypciB Ta IUTI03Y SKOCTi B HEHPO-CHMBOJIUHIN CHCTEMI.
MeTo0I0TiYHOI0 OCHOBOIO POOOTH € TepeXis BiJ eKOHOMIUHOI Teopii «xBopoOu BUTpaT baymos», sika mpiopnutesye MIBUAKICTH BUPOOHUITBA, 0
«3aKoHy ekoHOMikH [13 Boemay, 1m0 BCTaHOBIIOE JIOrapu(MiyHy 3aJ€XKHICTh MiXK 4acOM BUSIBICHHS Ae(EeKTy Ta BapTiCTIO HOro BumpasieHHs. s
(opmaizanii IMCKpeTHUX JeTepMiHOBaHUX npoueciB Jlucnaryepa y po6oti 3actocoBaHo matemaruunuii anapatr Mepex [lerpi (Cost-Colored Petri
Nets) 3amicTb KIacnuHUX cKiHdeHHnX aBToMarti (FSM). Lle no3Bonmino edeKTHBHO MOJIETIOBATH CTaH CUCTEMH, YIPABIISITH KOHKYPEHTHICTIO POIIECIB
Ta CyBOPO KOHTPOIIOBATH OIO/KET MOBTOPHHUX crpol (retry budget), yHUKar04YH PU3HMKIB HECKIHIEHHHUX IUKIIIB pereHepallii Ta «CIripai cMepTi» BUTpaT
TOKeHiB. Peanizanis cucremu 6asyerscst Ha natepHi « Test-First Generation», ie mporiec Banifanii BiIoOKpeMIIeHO Bij reHepaltii 0i3Hec-JIOTiKH: CoYaTKy
tdopmyrotses TectoBi keifcu (JSON), i nmmre Ha ix ocHOBI renepyeThess DMN-Mojiens, sika HeraitHO nepeBipsieTbest BOyqoBaHnM pymriem Camunda.
Emnipryna yacTHHA JOCHIDKEHHS BKIIOYA€ aHalli3 e()eKTUBHOCTI IBOX CTpATErii BIJAHOBJIEHHS MicJisi MOMMJIOK Ha BUOipui 3 200 1MKIIiB reHepartii:
Crparerii A (He3anexna pereHepauisi Tinbku Tadbmuni DMN) ta Crparerii B (cminbHa perenepamiss DMN Tta TectoBux KeiiciB). Pesymprati
eKCIIepHMEHTY BUSBHIM KOHTPIiHTYiTHBHY mepeBary Crtparerii B, ska mpomemoHcTpyBana 3HIKEHHS 3arajibHOI BapTOCTi renepanii Ha 6,06% Ta
CKOpOYEHHS CIIOKMBAHHS TOKEHIB Ha 8,44%, npu pocsruenHi 100% ycmimHocTi Banmigaunii. JloBeseHo, 110 MOBHA pereHeparisi KOHTEKCTY J03BOJISIE
LLM ycynyTtu noriysi ramonuHanii eekTHBHiIe, HiK iTepaTUBHE BUIPABICHHS OKPEeMHUX (parMeHTiB Koxy. OTpuMaHi pe3ynbTaTH MiATBEPIKYIOTh,
mo Jlucnaryep BHCTyIa€ €KOHOMIYHMM IIWTOM MiImpueMcTBa, 3abe3medyroun npuHmun «fail fast and fix cheap» (mBmzaka mommika — nemreBe
BHIpAaBJIeHH). BripoBa/pkeHHs 3anponoHoBaHoro (GpeiiMBOpKy TpancdopMye Ipouec CTBOPEHHs MOJENIeH PillleHb 3 PU3UKOBAHOTO €KCIEPHUMEHTY Y
HalifiHy IH)KCHEpHY IMCIMIUTIHY, /i€ CHMBOJIYHMI BaslilaTOp BUCTYIIA€ TapaHTOM ICTHHM Ui HEHPOHHOIO TIeHepaTopa, 3a0e3leuylouu JOoBipy
KOpHUCTYBadiB Ta CTabiIbHICTh Gi3HEC-CHCTEM.

Ku1ro4oBi ciioBa: BeMKi MOBHI MOJIENi, aBTOMAaTH30BaHEe MOJICTFOBAaHHS pilieHb, Mepexi [lerpi, Bamigauis ta Bepudikailis, ynpaBiiHHs Oi3Hec-
TIPOLIECAMH.

1. Introduction. In the contemporary landscape of
software engineering and Business Process Management,
the integration of generative artificial intelligence has
precipitated a paradigm shift. We are moving from an era
of manual, deterministic specification to one of automated,
probabilistic generation. This transition, while offering
unprecedented scalability, introduces a fundamental
volatility into the heart of enterprise architecture. The

central challenge is no longer the generation of code or
logic — Large Language Models have demonstrated
sufficiency in this regard — but rather the rigid orchestration
of these non-deterministic outputs into reliable, executable
artifacts.

This report focuses on the Dispatcher, the pivotal
component of a proposed framework designed to automate
the creation of Decision Model and Notation artifacts. The
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Dispatcher is not merely a message router; it is an
intelligent control system, a resource arbiter, and a quality
gatekeeper. It exists to bridge the "Probabilistic Gap" — the
chasm between the fluid, high-variance output of an LLM
and the strict, zero-tolerance syntactic requirements of a
DMN execution engine like Camunda.

Historically, the automation of decision logic has been
viewed through the lens of Baumol’s Cost Disease, which
posits that labor-intensive sectors, like business analysis,
suffer from stagnant productivity —compared to
manufacturing [1]. While valid, this economic theory
addresses only the speed of production. In the context of
Al-generated code, the more pressing economic principle
is Boehm’s Law of Software Economics [2]. It is often cited
in quality engineering contexts as Bem’s Law of the cost of
defects.

Boehm’s Law establishes a logarithmic relationship
between the time a defect remains in a system and the cost
to repair it [3]. An error in a decision table caught during
the drafting phase costs strictly the time required to rewrite
a line of text. The same error, if propagated to a production
runtime environment, incurs costs related to system
downtime, regulatory fines, customer service remediation,
and reputational damage. The cost differential can arguably
exceed 100:1.

Therefore, the primary economic mandate of the
Dispatcher is not simply to "generate DMN fast"
(addressing Baumol) but to "fail fast and fix cheap"
(addressing Boehm). By encapsulating the generation
process within a rigorous, iterative validation loop, the
Dispatcher spends cheap computational resources, like
tokens, to prevent expensive operational failures. It
transforms the validation process from a post-production
manual review into a pre-production automated cycle.

This report aims to:

1. Formally define the Dispatcher abstraction and its
role in the wider framework.

2. Provide a comparative mathematical modeling of
the Dispatcher’s behavior, specifically analyzing the trade-
offs between Finite State Machines and Petri Nets [9] in
representing its discrete deterministic processes.

3. Detail the concrete implementation of the
Dispatcher as a backend service.

4. Analyze the efficiency of different validation
strategies using empirical data, focusing on token
consumption and cost optimization.

5. Derive conclusions regarding the critical
importance of the Dispatcher in enabling safe, autonomous
BPM systems.

2. Related Works. The DMN has emerged as the
industry standard for bridging the communication gap
between business analysts and technical developers. DMN
provides a standardized XML-based syntax for defining
decision tables and FEEL logic, allowing organizations to
externalize decision rules from application code. This
externalization is crucial for agility, compliance, and
maintainability.

The core of DMN is the Decision Table, which maps
a set of inputs to a set of outputs based on a list of rules.
Crucial to the deterministic nature of DMN are Hit Policies

(e.g., Unique, Any, Priority, First), which dictate how the
engine resolves scenarios where multiple rules match the
input data. A violation of the Hit Policy (e.g., overlapping
rules in a 'Unique’ table) renders the model invalid and halts
execution. The complexity of DMN lies in its combination
of structural rigidity (strict XML schema validation) and
expressive power (FEEL functions for string manipulation,
date calculations, and list filtering).

Recent academic  discourse  highlights the
"Complexity Wall" in manual DMN creation. As the
number of input variables and rules increases, the state
space grows combinatorially [4]. This "Combinatorial
Explosion” exceeds the cognitive capacity of human
analysts, leading to errors of omission or contradiction that
are difficult to detect manually. This limitation underscores
the necessity for automated generation, yet simultaneously
raises the bar for the quality of that automation.

Recent research into the capabilities of Large
Language Models has identified a phenomenon known as
the "Struc-Bench Paradox". Study [5] indicates that while
LLMs excel at generating coherent natural language, they
struggle significantly with complex structured data
generation. The probabilistic nature of the Transformer
architecture is optimized for semantic flow and narrative
coherence, not for the rigid syntactic constraints of formal
languages like XML or JSON.

LLMs frequently lose track of long-range
dependencies in XML structures (e.g., closing tags opened
hundreds of tokens prior) or fail to maintain type
consistency across a decision table. Experiments using
GPT-3 for DMN generation have shown "underwhelming”
results when used in a zero-shot, unconstrained manner,
often failing to understand critical logical concepts such as
mutual exclusivity and completeness [6]. The models may
generate a table that appears correct to a human reader but
fails validation due to subtle schema violations or
"hallucinated" FEEL functions that do not exist in the
standard specification. This necessitates a shift from simple
"Prompt Engineering” to robust "Neuro-Symbolic
Architectures,” where the LLM is treated as a stochastic
component within a larger, deterministic system.

The proposed solution aligns with the emerging field
of Neuro-Symbolic Al [7, 13], which seeks to combine the
learning and generative capabilities of neural networks with
the reasoning and guarantees of symbolic logic. In this
context, the LLM provides the "Neuro" component — the
ability to translate fuzzy, unstructured intent into draft code
— while the Dispatcher and the DMN Engine provide the
"Symbolic" component — the verification of syntax, logic,
and execution.

Research [8, 12] indicates that RAG significantly
improves the factual accuracy of LLMs by grounding
generation in retrieved documents, such as domain-specific
policy manuals or schema definitions. Furthermore, the
concept of "Self-Correction" or "Self-Healing" loops has
gained traction. However, as noted in "Struc-Bench," self-
correction is only effective if the external signal (the error
message) is precise and the system has a strategy to utilize
it effectively [15]. This report explores specifically how to
orchestrate that correction loop efficiently, moving beyond
simple retries to strategic regeneration.
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The implementation of the Dispatcher also addresses
critical human factors in Al adoption. Trust in Al systems
is heavily influenced by Transparency and Reliability [10].
The "Black Box" nature of LLMs reduces trust, as users
cannot see the internal reasoning process. By wrapping the
LLM in a Dispatcher that validates output against explicit
test cases, the system provides a powerful transparency
mechanism — users can see why a model was accepted,
because it passed specific tests, or why it was rejected.

Moreover, the literature suggests that user Mental
Models play a crucial role in the successful deployment of
Al. Users with inaccurate mental models of Al capabilities
may over-rely on the system, accepting incorrect outputs
without scrutiny, or under-rely on it, rejecting valid outputs
due to skepticism. The Dispatcher mitigates over-reliance
by acting as a hard quality gate; it simply refuses to present
an invalid model to the user, thereby enforcing a baseline
of reliability that fosters appropriate trust. The "Feeling of
Rightness" and "Feeling of Error" are metacognitive
signals that influence user reliance [11]; the Dispatcher's
explicit validation reports align these feelings with the
actual technical reality of the generated artifact.

3 Formalizing the Dispatcher. In the framework, the
Dispatcher represents the Control Plane. The architecture
separates the Request, the Generator, and the Validator.
The Dispatcher sits at the intersection of these three
vectors.

It functions as a feedback transducer. Current LLMs
lack internal feedback loops; they generate token t+1 based
on token t without the ability to pause, test, and retract. The
Dispatcher imposes this missing loop externally, acting as
the analytic layer over the generative layer.

To engineer a robust Dispatcher, we must move
beyond ad-hoc scripting and strictly define its behavior

Idle ReceiveRequest
(q0)

The complexity of the diagram grows linearly with the
magnitude of the counter. Furthermore, FSMs are
inherently sequential. They cannot easily model a scenario
where the Dispatcher generates the DMN and the Test
Cases in parallel threads and waits for both to complete
before validating.

3.2 Petri Nets.

A Petri Net is a mathematical modeling language for
the description of distributed systems [9]. It is a directed
bipartite graph. Formally, a Petri Net is a tuple:

PN = (P,T,F,W, M,)

Where:

P is a finite set of Places (represented by circles).
Places hold Tokens.

T is a finite set of Transitions (represented by
bars/rectangles).

using mathematical formalisms. This allows us to prove
properties about the system, such as termination, resource
boundedness, and deadlock freedom. The two primary
candidates for modeling discrete event systems like the
Dispatcher are Finite State Machines and Petri Nets.

3.1 Finite State Machines.

A Finite State Machine is a computational model
consisting of a finite number of states, transitions between
those states, and inputs. Formally, a deterministic finite
automaton is a 5-tuple:

M= (Q,Z,(S,qO,F)

Where:
Q is a finite set of states (e.g., Idle, Generating,
Validating, Success, Failure).

¥ is a finite set of input symbols (e.g.,
ReceiveRequest, GenSuccess, GenFail, ValSuccess,
ValFail).

¢ is a transition function QQ.

q, 1S the start state.

F is the set of accepted states.

An FSM can model the basic lifecycle of a request:

1. Startin Idle.

2. On “Receive Request”, transition to Generating.

3. On “GenSuccess”, transition to Validating.

4. On “ValSuccess”, transition to Success (Final).

5. On “ValFail”, transition back to Generating.

The limitation of the FSM becomes apparent when we
introduce resources, specifically the "Retry Limit." An
FSM has no internal memory of how many times it has
visited a state. To model a retry limit of 5, an FSM
essentially requires distinct states for each attempt. Figure
1 demonstrates a potential infinite loop in FSM
representation of Dispatcher.

Generating
W . _(Potential Infinite Loo‘p}_ -

Fig. 1. Potential issue with FSM Dispatcher

FS (PxT)u(TxP) is a set of flow relations
(arcs) connecting Places to Transitions and Transitions to
Places.

W is a weight function (how many tokens are
consumed/produced).

M, is the initial marking (distribution of tokens).

The Dispatcher is best modeled as a High-Level Petri
Net or a Colored Petri Net, where tokens utilize values
(attributes).

Places (P)

- P;,, — Incoming Requests.

- Ppyager — Available Retries.

- Fjen — The system is generating.

- P,q; — The system is validating.

- P, — final Output.

Transitions (T)

- Tstare MoVes token from Py, t0 Pyep,.
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- Tretry CONsumes 1 token from Py, 44, If Pbudget is
empty, this transition cannot fire. This natively enforces the
logic: "If retries > 0, then regenerate."

- Tapore fires only when Pyyq0.. is empty and
validation fails.

The fundamental constraint of the Dispatcher is the
"Retry Limit" (driven by cost). Petri Nets model this
naturally through the initial marking M, (Ppyaget) = 5. The
availability of a token in the Pbudget place is a hard
requirement for the T, transition. If the place is empty,
the logic physically prevents the Dispatcher from retrying,

enforcing the "Stop-Loss™ strictly without the need for
external counters or state explosion.

Petri Nets natively handle concurrency. If we decide
to optimize speed by generating DMN and Test Cases
simultaneously, a Petri Net handles this with a "Fork"
transition (one input token produces two output tokens into
parallel places (e.9., Pyenpmn and Pgenrese) and a "Join"
transition (which waits for tokens in both parallel places
before firing). FSMs cannot model this without extreme
complexity.

Petri Nets allow us to visualize the flow of the process
and the accumulation of state (tokens) simultaneously.

Abort
(No Budget)

Invalid
& Empty Budget

\ Valid
Ready for ] \alidate
Validation | o«

Invalid
& Has Budget

Retry
Budget
(Tokens: 5)

DMN Gen
(Context)

\d

L4
Retry p| TestGen
(-1 Token) (JSON}

Fork
(Start Gen)

g

Fig. 2. Petri Net Visualisation

We can extend this to a Cost-Colored Petri Net where
each transition t is associated with a cost function C(t). The
total cost of a trace is the summation of costs of all fired
transitions. This maps directly to the economic analysis of
token consumption, allowing for precise modeling of
operational expenditure.

For the purpose of this framework, we define the
Dispatcher as a Discrete Deterministic Process modeled by
a Petri Net. This choice allows us to strictly define the state
space while explicitly managing the economic constraints,
represented by the budget tokens, that govern the system's
operation. It provides the mathematical rigor necessary to
prove that the system will eventually terminate either in
Success or Exhaustion and will never enter an infinite loop
of costly regeneration.

4 Dispatcher Implementation. Having defined the
abstraction and the mathematical model, we now describe
the Dispatcher as it exists in the current technological
implementation. The architecture is designed around a
"Micro-Kernel" pattern where the Dispatcher orchestrates
specialized modules, ensuring separation of concerns and
scalability.

4.1 Component Architecture.

The system consists of the following core modules,
orchestrated by the Dispatcher shown on Figure 3.

The Dispatcher accepts the RuleSet, manages the
RetryBudget, and maintains the state of the transaction. It
acts as the "Single Source of Truth" for the modeling
process.
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Schema Injector takes the target JSON schema and
injects the schema definition directly into the prompt
context. This constrains the LLM's search space,
preventing it from hallucinating variable names which
would cause immediate validation failures.

Prompt Composer is responsible for assembling all
necessary input elements into a structured prompt. It
combines:

- System Instructions — syntax rules like "Return only
XML" or "Do not use markdown formatting".

- Schema Context — the output from the Schema
Injector.

- RAG Content external knowledge retrieved from the
knowledge base (e.g., domain policies, previous successful
models).

- User Rule Set the natural language description of the
logic.

Rule Set > P
Natural Language Input
Schema Context "
DMN Context Descriptor " Dispatcher
RAG ‘ > ¢
Domain Knowledge Docs
v
Output

- Retry Context if in a retry loop, it appends the
previous error log and the failed XML to guide the
correction.

Generation Module is an interface to the probabilistic
agent (e.g., GPT-4 or Claude 3.5 Sonnet). It handles API
communication, token limits, and temperature settings. For
code generation tasks, the temperature is typically set low
(T=0 to 0.3) to minimize variance and maximize
determinism.

Validator Module is a deterministic verification
engine. It performs a multi-stage check:

- Syntax Checker validates against the DMN XML
Schema (XSD).

- Semantic Checker parses FEEL expressions for type
safety.

- Logic Checker runs the generated DMN against
generated Test Cases using an embedded Camunda DMN
Engine.

> Validation Module <

A

A4 A4

Prompt Composer LLM API

A A

\ 4

> Generation Module <

Fig. 3. Framework Structure

4.2 The Execution Flow.

The Dispatcher’s execution flow orchestrates a
sophisticated, multi-stage process designed to enforce
reliability through a "Test-First” generation philosophy.
Unlike rigorous single-shot approaches, the architecture
decouples the creation of validation criteria from the
generation of business logic. The process initiates when the
Dispatcher receives a request and loads the relevant schema
definitions. In the first phase, the Prompt Composer
constructs a targeted prompt dedicated solely to generating
a comprehensive set of Test Cases in JSON format. This
utilizes the injected schema context and retrieved domain
knowledge to ensure the tests cover edge cases before any
decision logic is written.

Upon successfully receiving the structured Test
Cases, the Dispatcher transitions to the second phase: DMN
generation. The Prompt Composer constructs a new,
distinct prompt that incorporates the user's natural language
rules alongside the specific Test Cases generated in the
previous step. This architectural pattern grounds the Large
Language Model, effectively instructing it to write XML
logic that satisfies the concrete data scenarios already
defined. This significantly reduces the hallucination of

variables, as the model is constrained by the strict structure
of the pre-generated test data.

Once the DMN XML is generated, the Dispatcher
does not merely store the artifact but subjects it to
immediate, execution-based validation. The system spins
up an instance of the embedded Camunda DMN engine and
executes the newly created logic against the Test Cases.
This internal loop acts as the process's immune system,
comparing the engine's actual computed outputs against the
expected results. If the validation passes, the artifact is
stamped as valid and returned to the user.

However, if a discrepancy arises — whether a syntax
violation or a logical mismatch where the actual output
differs from the expected — the Dispatcher triggers a
convergence loop. The exact error context is captured and
fed back into the subsequent generation prompt, instructing
the model to debug its previous output. This iterative
refinement continues until the system converges on a
solution that passes all tests or until the operational Retry
Budget is exhausted, ensuring the system fails fast and fixes
cheaply according to the economic principles defined
earlier.
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Generation
Module

Validation
Module

Dispatcher

Actor

Rule Set

Schema
Injector

Prompt

Vi DB
Composer CHED

LLM API

[Loop J
DMN is valid
OR
Number of
tries exceedé
the limit

Generate Test Cases Compose Test Cases Prompt

Prompt

Test Cases
Generate DMN

Prompt

DMN XML Code
Validate DMN

Validate DMN Syntax

-

Validate DMN Table
. Against Test Cases

B Validation Result

-
DMN XML Code

Compose DMN
- Generation Prompt
>

-

Get Schema Context .

-
Schema Context

Retrieve Domain Knowledge

Specific Domain Knowledge (RAG)
Generate Test Cases

Test Cases Array

Get Schema Context
-

-
Schema Context
Retrieve Domain Knowledge

Specific Domain knowledge (RAG)

Generate DMN

DMN XML Code

Fig. 4. Execution Sequence Diagram

4.3 Parameters and Configuration.

The Dispatcher's operation is defined by a set of
organization-configured parameters. Parameters, which
represent system constraints, include Max_Retries, a hard
limit on the processing budget, the Model_Temperature,
which determines the variance and determinism of the
underlying Al model and Validation_Strategy taht allows
the Dispatcher to select between a fast, low-confidence
"Syntax Only" check and the more rigorous, expensive, and
slow "Full Semantic Execution." The current system
implementation is configured to use the "Full Semantic
Execution" strategy.

5 Efficiency Optimization.

The introduction of the Dispatcher -effectively
replaces the human labor cost with a computational
resource cost. While computing is cheap, it is not free. To
optimize this, we must rigorously define the cost function
governed by Boehm’s Law.

5.1 The Cost Function of Determinism.

We can define the cost of a single validated DMN
model (Cpo4e1) 8S:

N
Crnodel = Cgen + Z(Ceval + Cfix)
k=1

Where:

Cgen — is the initial generation cost (Tokens In +
Tokens Out).

N — is the number of retries required.

Co.par — IS the computational cost of running the
validation engine (negligible in cloud terms, but non-zero
in time).

Crixis the cost of the regeneration call.

Crucially, Cy;,tends to be higher than Cg.,,because the
context window grows. The "Fix" prompt must contain:
(Original Rules + Original Prompt + Bad XML + Error Log
+ Fix Instruction). Thus, the cost of retries accelerates.

5.2 Boehm’s Law and the "Stop-Loss"".

Boehm’s Law states that the cost of a defect grows
exponentially with the phase of detection. Let Costgegign =
1X. Let CoStproguction = 100X.

The Dispatcher’s goal is to minimize the Total Cost
of Ownership:

TCO = Cmodel + (Pfailure X COStproduction))

Where Prgipre— is the probability that a defective
model slips through the Dispatcher.

By implementing the Validation Loop, the Dispatcher
drives Prqprctoward zero. Even if the Dispatcher spends
5x the generation cost on retries, it is strictly economically
superior to releasing a bug that costs 10.
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Fig. 5. The theoretical intersection of cost and quality managed by the Dispatcher

However, there is a limit. If the model fails 5 times,
the probability of success on the 6th try drops significantly
(diminishing returns), while the cost accumulates. The
Retry Limit serves as the economic "Stop-Loss." It prevents
the "Death Spiral" where the Al consumes infinite tokens
trying to solve an impossible or poorly defined prompt. At
N=5, the Dispatcher admits defeat and escalates to a
human, preserving the remaining budget.

The Dispatcher tracks dependencies
resources spent and value obtained.

- Input. Time and Money (Tokens).

- Output. Accuracy (Valid DMNs) and Automation
(Removal of Human).

The experimental data allows us to quantify this
relationship.

between

6 Experimental Analysis.

We analyze the performance of the Dispatcher based
on a controlled experiment comprising 200 generation
cycles. The experiment compares two distinct error-
recovery strategies utilized by the Dispatcher.

6.1 Experiment Setup

The modeling and experimental phase for Dispatcher
optimization involved running 200 requests with a
maximum limit of 5 retries. The core validation method
was to execute the generated Test Cases against the
corresponding DMN table. Two distinct strategies were
tested for handling validation failures.

Strategy A, the "Independent" approach, mandated
that upon a validation error, the Dispatcher would request a
regeneration of only the DMN Table, treating the original
Test Cases as the definitive "Ground Truth." In contrast,
Strategy B, the "Joint/Dynamic" approach, allowed for
more flexibility by instructing the Dispatcher to request a
simultaneous regeneration of both the DMN Table and the
Test Cases when a validation failure occurred. These
strategies aimed to compare the efficiency and
effectiveness of selectively regenerating components
versus regenerating them together to correct discrepancies.

6.2 Quantitative Results

The user provided summary statistics for the two
strategies.

Table 1 —Strategies Comparison

Metric Strategy A (DMN Only) Strategy B (Joint Regen) Improvement

Total Cost (USD) $21.96 $20.63 6.06% Savings
Total Tokens In 1,378,730 1,262,336 8.44% Reduction

Total Tokens Out 1,188,312 1,189,275 ~0% (Neutral)
Overall Success Rate 95.5% (191/200) 100% (200/200) 4.5% Improvement
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6.3 Interpretation of Results.

The experimental findings reveal a counter-intuitive
outcome critical to the Dispatcher's architectural design.
Initially, one might hypothesize that Strategy A would
prove more economical due to the reduced text generation
(only the DMN) during retry cycles. However, the data
indicates a higher total cost for this approach.

Analysis of the experiment logs suggests that DMN
failures frequently stem from inherent ambiguities or
hallucinations in the initial generation. When the
Dispatcher mandates the Language Model to rectify the
DMN to align with the originally generated — and
potentially flawed — test cases, the LLM encounters
significant difficulty. This situation precipitates a "conflict
state” wherein the logical reconciliation is unattainable.
The consequence is an increased number of retries
(reaching 3, 4, or 5 attempts), which inflates the
consumption of Input Tokens (history) and, consequently,
the overall operational cost.

In contrast, Strategy B (Joint Regeneration) provides
the Dispatcher with the capability to declare: "The current
logic is fundamentally inconsistent. The entire artifact must
be discarded and regenerated." By executing a
simultaneous regeneration of both the DMN and the Tests,
the LLM is empowered to construct a new, internally
coherent semantic structure. This process resolves the
initial ambiguity by initiating a clean slate. The data shows
that Strategy B achieves valid convergence faster (fewer
retries).

Even though each retry generates more tokens (DMN
+ JSON), the total number of retries drops significantly
enough to reduce the overall Token usage by 8.44%. The
experiment logs confirm the robustness of the Dispatcher
in Strategy B.

7 Discussion.

The analysis of the Dispatcher reveals broader
implications for the future of Al in BPM. The Dispatcher
effectively acts as an economic shield for the enterprise. By
strictly enforcing Boehm’s Law — catching errors when
they cost $0.10 at one retry rather than $10,000 at one
production incident. The cost of roughly $0.10 per
validated model is orders of magnitude lower than the
human equivalent, which would likely exceed hundreds of
dollars in billable hours for analysis and testing.

The superiority of Strategy B suggests a best practice
for Neuro-Symbolic systems: Coherence over Patching.
When a probabilistic model fails to produce a consistent
logical structure, it is often cheaper to discard the artifact
and regenerate it than to attempt iterative repairs. Strategy
B effectively implements "Test-Driven Development" for
Al. The model is forced to align its semantic understanding
of the problem across two different modalities (JSON data
and XML logic), filtering out hallucinations that would
appear in only one.

From a human factors perspective, the Dispatcher
serves as a "Trust Proxy." As noted in the literature, users
are prone to "Automation Bias" or "Algorithm Aversion"
based on their mental models of the Al's reliability.
Inaccurate mental models can lead to dangerous over-
reliance. The Dispatcher's strict validation regime ensures

that the system output is never a hallucination; it is either a
valid model or an error message.

This work contributes to the broader field of Neuro-
Symbolic Al by demonstrating a practical implementation
of the Neuro — Symbolic — Neuro Architecture. The
symbolic validator acts as the ground truth that guides the
neural generator. This overcomes the "Struc-Bench"
limitations not by making the LLM "smarter”, which is
expensive and uncertain, but by placing it in a system that
makes it "safer." Future work should explore the integration
of formal verification methods (e.g., SMT solvers) into the
Validator module to provide even stronger guarantees than
test-based execution.

8 Conclusion.

The Dispatcher is the keystone of the automated
decision modeling framework. It transforms the integration
of Large Language Models into Business Process
Management from a risky experiment into a viable
engineering discipline.

By abstracting the non-deterministic interactions of
the Al into a discrete, deterministic process modeled by
Petri Nets, the Dispatcher ensures operational stability. It
manages the inherent trade-off between the cost of
generation and the accuracy of the result, leveraging the
logic of Boehm’s Law to minimize the Total Cost of
Ownership.

The experimental evidence unequivocally supports
the implementation of a Dispatcher that utilizes a Joint
Regeneration strategy. This approach, which prioritizes the
creation of internally consistent logic-validation pairs over
iterative patching, demonstrated a 6.06% reduction in cost
and an 8.44% reduction in token consumption compared to
traditional methods.

In conclusion, the Dispatcher validates the premise
that while Al can generate the logic, it is the deterministic
orchestration — the rigid framework of checks, balances,
and economic limits — that creates the value. It solves the
"Modeling Bottleneck™ not just by working faster than a
human, but by validating cheaper than a human.
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