DEFERRED SOLUTIONS METHOD DEVELOPMENT FOR CONSTRUCTING A HAMILTONIAN CYCLE SEARCH ALGORITHM ON A GRAPH

Authors

DOI:

https://doi.org/10.20998/2413-3000.2022.5

Keywords:

graph; Hamiltonian cycle; complexity; NP-completeness; enumeration space; enumeration algorithm; enumeration reduction; deferred solutions method.

Abstract

The subject of research is the solution of the problem of finding a Hamiltonian cycle on a graph, which belongs to the NP complexity class. The aim of the work is to develop an effective polynomial algorithm for its optimal solution. The paper analyzes the problem and the existing methods of its solution, identifies the shortcomings of these methods. It is showing that the main obstacle remains the inability to formulate the conditions for finding the optimal solution. As a result, the methods for solving this problem based on enumeration over acceptable solutions or on intuitive heuristics. Heuristic methods do not guarantee finding the optimal solution. Enumeration methods are popular because of a simple linear search scheme in a pre-known set of valid solutions to the problem. They allow you to find the optimal solution, but require a lot of time. In enumeration algorithms, valid solutions can be obtain by using graph traversal algorithms, but the factorial cost of enumeration requires reducing the enumeration space, for example, using the branch-and-bound method. This method is based on an ordered search of acceptable solutions, considering only the most promising ones, and discarding at once the whole sets of solutions that are not such. For the method to work, it is important to determine the cost function of a partial solution that depends on certain parameters, which is difficult, and perhaps impossible for the problem under consideration. If the function generates a probabilistic estimate, there is a risk of losing the optimal solution to the problem when it is discarding. The only reliable estimate for a valid solution is the length of the cycle, which, unfortunately, becoming known after its formation. As an alternative, the article proposes a new method of deferred solutions, according to which all possible partial solutions are constructed and stored simultaneously. Each partial solution is characterizing by its own evaluation. At each step, a partial solution is completing by adding a vertex to it, to which you can go from its last vertex – as many new partial solutions are building, as there are options for going from its last vertex. The generated partial solutions are saving, and the current worked-out solution is deleting. To perform the next step, the partial solution that has the smallest length estimate is selecting. Execution continues until the optimal solution is not build. The proposed method solves the problem under consideration, but its application for large graphs requires the selection of a correct estimate of partial solutions.

References

Акимов О. Е. Дискретная математика. Логика, группы, графы, фракталы. Москва, 2005. 656 с.

Емеличев В. А., Ковалев М. М., Кравцов М. К. Многогранники, графы, оптимизация. Москва. 1981. 341 с.

Гери М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. Москва, 1982. 416 с.

Little J. D. C. An Algorithm for the Traveling Salesman Problem. Operations Research. 1963. Vol.11. №6. p. 972–989. doi.org/10.1287/opre.11.6.972

Дойбер В.А., Косточка А. В., Закс Х. Более короткое доказательство теоремы Дирака о числе ребер в хроматически критических графах. Дискретный анализ и исследование операций. Новосибирский гос.ун-т, 1996. с. 28–34.

Оре О. Теория графов. Москва, 1980. 336 с.

Гамильтонов граф: сайт. – URL : https://ru.wikipedia.org/wiki/Гамильтонов_граф. (дата обращения : 4.10.2019).

Павленко В. Б. Теоретические аспекты построения гамильтонова цикла. Теорія оптимальних рішень. 2011, №10. с. 150–155. сайт . URL : http://dspace.nbuv.gov.ua/ bitstream/handle/123456789/46787/22-Pavlenko.pdf?sequence=1 (дата обращения : 4.10.2019).

Прокопенков В. Ф., Кожин Ю. Н., Малых О. Н. Определение оптимального кольцевого маршрута, проходящего через заданное множество пунктов на карте. Innovative technologies and scientific solutions for industries. 2019. No.1 № 7. C. 102–112. doi.org/10.30837/2522-9818.2019.7.102

Харари Ф. Теория графов. Москва, 1973. 300 с.

Стивенс Р. Алгоритмы. Теория и практическое применение. Москва, 2016. 544 с.

Муравьиный алгоритм : сайт. URL : https://ru.wikipedia.org/wiki/Муравьиный_алгоритм.

Pol R., Langdon W. B., McPhee N. F. A Field Guide to Genetic Programming. Genetic Programming and Evolvable Machines. 2009. Vol. 10 №2. p. 229–230. doi.org/10.1007/s10710-008-9073-y.

Прокопенков В. Ф. Модификация генетического алгоритма поиска гамильтонова цикла на графе. Международная научная конференция MicroCAD 2016 : Секция №1 : Информационные и управляющие системы. 2016. С. 32.

Прокопенков В. Ф. О возможности нахождения оптимального решения генетическим алгоритмом. Международная научная конференция MicroCAD 2017 : Секция №1 : Информационные и управляющие системы. 2017. С. 37.

Мартынов А. В., Курейчик В. М. Гибридный алгоритм решения задачи коммивояжера. Известия ЮФУ. Технические науки. – 2015. С.36–44.

Eppstein D. The travelling salesman problem for cubic graphs. Lecture Notes in Computer Science. 2003. P.307–318. doi.org/10.1007/978-3-540-45078-8_27

Iwama K., Nakashima T. An Improved exact algorithm for cubic graph TSP. Lecture Notes in Computer Science, 2007. p. 108 – 117. doi.org/10.1007/978-3-540-73545-8_13.

Bellman R. Dynamic Programming Treatment of the Travelling Salesman Problem. Journal of the ACM. 1962. Vol.9 № 1, p. 61–63. doi.org/10.1145/321105.321111

Held M. The travelling-salesman problem an minimum spanning trees. Operations Research. 1970. Vol. 18 № 6, p. 1138–1162. doi.org/10.1287/opre.18.6.1138

Roberts S. M., Flores B. An engineering approach to the travelling salesman problem. Management Science. 1967. Vol. 13 № 3, p. 269–288. doi.org/10.1287/mnsc.13.3.269

Прокопенков В. Ф. Новый метод поиска гамильтонова цикла на графе. Вісник Національного технічного університету «ХПІ». Серія: Стратегічне управління, управління портфелями, програмами та проектами. 2020. № 2, С.43-49. doi.org/10.20998/2413-3000.2020.2.6

Прокопенков В. Ф. Полиномиальный алгоритм поиска гамильтонова цикла на графе. Вісник Національного технічного університету «ХПІ». Серія: Стратегічне управління, управління портфелями, програмами та проектами. 2021. № 1(3), С.55-65. doi.org/10.20998/2413-3000.2021.3.8

Prokopenkov V.P. Kozhyn Y.N. Deferred solutions scheme for the problem of finding a Hamiltonian cycle solving. Международная научная конференция MicroCAD 2021 : Секция №1 : Информационные и управляющие системы. 2021. С. 16.

Прокопенков В. Ф. Параллельный алгоритм поиска гамильтонова цикла на графе. Международная научная конференция MicroCAD 2015 : Секция №1 : Информационные и управляющие системы. 2015. С. 25.

Published

2022-07-31

Issue

Section

Сборник научных статей