MATHEMATICAL MODELS OF IT BUSINESS RISKS ASSESSMENT

Authors

  • Yevgen Gomozov Національний технічний університет «Харківський політехнічний інститут», Ukraine
  • Vladyslav Mats Національний технічний університет «Харківський політехнічний інститут», Ukraine

DOI:

https://doi.org/10.20998/2413-3000.2024.8.11

Keywords:

p-adic models, stock markets, analysis and risk management of stock markets, models in the form of equations in fractional derivatives, dynamic risk management of IT-businesses

Abstract

The modern world is a world of almost continuous various disasters. The general concept of risks is closely related to such disasters of a natural, man-made, informational and financial nature. The definition of risks differs greatly among specialists in different industries. Therefore, the formation of general approaches to the description of the indicated phenomena in general terms is relevant. Such general approaches that could lead to the construction of mathematical models of risk analysis and management capable of working in real time. Generally speaking, it is stock and financial markets that instantly react to various environmental changes in a standard way. Such a standard reaction is a sharp change in the rates of financial assets and the collapse of stock markets. Therefore, the authors consider it expedient to start the work with the analysis of the risks of companies and stock markets. The paper analyzed classical approaches to the definition and mathematical modeling of qualitative and quantitative analysis of both the risks of a specific company and the stock market as a whole. An overview of currently existing models for determining and calculating the risks of stock markets is also provided. The hypotheses underlying these models are closely related to probabilistic approaches. Markets are assumed to be stationary and models are assumed to be linear and quadratic. However, due to the complex structure of the current global stock market, these models no longer work. More or less adequate forecasts usually require a large number of observations, work poorly around bifurcations, and do not have a computer implementation that would be able to make forecasts in real time. IT-business markets are changing the fastest, so it was very important to start analyzing the risks of such markets. The work takes the first step in building a "synthetic" model of dynamic calculation and risk management of IT-businesses.

References

Жадность и безрассудство: почему крах FTX сравнивают с кризисом 2008 года; 28.02.2023 ForkLog. URI: https://forklog.com/exclusive/zhadnost-i-bezrassudstvo-pochemu-krah-ftx-sravnivayut-s-krizisom-2008-goda

Didier Sornette, Critical market crashes, Physics Reports 2003, №378, p.1-98. https://doi.org/10.1016/S0370-1573(02)00634-8

FTX Crash: Embattled Crypto Exchange Offloads Crypto Assets to Pay Customers, URI: https://cryptonews.net/news/market/28465875/

Ilknur Koca. Financial model with chaotic analysis. Results in Physics. 51 (2023) 106633

Zharkov V.M. Adelic theory of stock market, URI: https://arxiv.org/ftp/arxiv/papers/1102/1102.2515.pdf

Prosyankina-Zharova T.I., Terentiev O.M., Bidyuk P.I. and Makukha M.P. Features of SAS Enterprise Guide for probabilistic modeling system, macroeconomic analysis and forecasting. Journal of Mathematics and System Science. NY: David Publishing Company, USA, 2016. 112-122 p. ISSN 2159-5291, USA. doi: 10.17265/2159-5291/2016.03.003

Бідюк П.І. Розробка методології системного аналізу, моделювання та оцінювання фінансових ризиків. Номер державної реєстрації теми – 0115U000356. URI: https://report.kpi.ua/files/2016_2813%20.pdf

Vinesh Kumar, Sandeep Kumar Gupta, Rohit Kaushik, Subhask Kumar Verma, and Olena Sakovska, An Intuitionistic Fuzzy Approach to Analysis Financial Risk Tolerance with MATLAB in Business, © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 R. Agrawal et al. (eds.), International Conference on IoT, Intelligent Computing and Security, Lecture Notes in Electrical Engineering 982, https://doi.org/10.1007/978-981-19-8136-4_26

Burtnyak I., Kushnir O., Application of neuron networks to analysis of currency rate. Journal of Vasyl Stefanyk Precarpathian National University. http://journals.pnu.edu.ua Vol. 10, No. 2 (2023), 6-14 doi: 10.15330/jpnu.10.2.6-14

Dmitriy Piskarev Вычисление коэффициента Херста URI: https://www.mql5.com/ru/articles/2930го

May R. Time-delay versus stability in population models with two and three trophic levels. Ecology, 1973, 54, p. 315-325 https://doi.org/10.2307/1934339

Lijuan Li, Front. Energy Res., 24 November 2021 Sec. Process and Energy Systems Engineering. Volume 9 - 2021 |https://doi.org/10.3389/fenrg.2021.786439 URI: https://www.frontiersin.org/articles/10.3389/fenrg.2021.786439/full

Sarboland M., Numerical solution of fractional differential equations with partial derivatives using a multiquadric quasi-interpolation scheme. European Journal of Computational Mechanics. 2018, 27, p. 89-108, https://doi.org/10.1080/17797179.2018.1469833.

Кравець І.О., Лисенко А.Ю. Дослідження Методу Групового Урахування Аргументів для авторегресійних та дистрибутивнолагових моделей. Наукові праці «Комп’ютерні технології», вип. 148, том 160, стор.62 – 73, Миколаїв, Вид-во ЧДУ ім. Петра Могили, 2011.

Published

2024-06-23